$\displaystyle\int \sec x \;dx$ için çözüm aklımıza gelen tüm farklı metodlarını ekleyelim.

0 beğenilme 0 beğenilmeme
92 kez görüntülendi
Yol 1:

$t=tan(x/2)$ seçelim;

$dt=\dfrac{dx}2(1+tan^2(x/2))$

Ve bu taktik gereği biliyoruz ki ;

$sinx=\dfrac{2t}{1+t^2}$    ve     $cosx=\dfrac{1-t^2}{1+t^2}$  olur.


$$\displaystyle\int secxdx=\displaystyle\int \dfrac1{cosx}dx=\displaystyle\int \dfrac{1+t^2}{1-t^2}\dfrac{2dt}{1+t^2}=\displaystyle\int\left(\dfrac{1}{1-t}+\dfrac{1}{1+t}\right)dt$$

$$=ln\left|\dfrac{1+t}{1-t}\right|+C=ln\left|\dfrac{1+tan(x/2)}{1-tan(x/2)}\right|+C$$

Tan'ın $tan(\alpha+\beta)$ kuralından dolayı;
 
$$\displaystyle\int secxdx=ln\left|\dfrac{1+tan(x/2)}{1-tan(x/2)}\right|+C$$$$=ln\left|\dfrac{tan(\pi/4)+tan(x/2)}{1-tan(\pi/4)tan(x/2)}\right|+C=\ln\left|tan\left(\dfrac{2x+\pi}{4}\right)\right|+C$$


Denenebilinecek öbür yollar:


Yol 2:
$cos\theta=\dfrac{[e^{(i\theta)}+e^{(-i\theta)}]}{2}$

Tanımını  kullanmak,

Yol 3:
$\int \dfrac{1}{a+b\cos x}dx=\dfrac{1}{\sqrt{b^{2}-a^{2}}}\ln \left\vert\dfrac{\sqrt{a+b}+\sqrt{b-a}\tan x/2}{\sqrt{a+b}-\sqrt{b-a}\tan x/2}\right\vert \quad a\lt b$
Yol 4: 
$sinx=2sin(x/2)cos(x/2)$

durumunu kullanmak.

Yol 5,6:

$cos^2x=(1-sinx)(1+sinx)$

$sin^2x=(1-cosx)(1+cosx)$



bkz:https://en.wikipedia.org/wiki/Integral_of_the_secant_function

14, Ocak, 2017 Lisans Matematik kategorisinde Anil (7,732 puan) tarafından  soruldu
15, Ocak, 2017 DoganDonmez tarafından düzenlendi

Küçük bir yazım hatasını düzelttim.

teşekkürler.

Bu integralin, Mercator un haritaları ile ilginç bir ilişkisi ve hikayesi var. İnternette bulunabiliyor (benim bulabildiklerimin hepsi İngilizce) Örneğin:

http://www.math.ubc.ca/~israel/m103/mercator/mercator.html?utm_source=weibolife

http://www.maa.org/sites/default/files/pdf/mathdl/MM/0025570x.di021115.02p0115x.pdf

Çok teşekkürler hocam, bu tür bilgileri çok seviyorum.

2 Cevaplar

2 beğenilme 0 beğenilmeme

$$I=\int\sec xdx=\int\frac{1}{\cos x}dx=\int\frac{\cos x}{\cos^2 x}dx=\int\frac{\cos x}{1-\sin^2 x}dx$$ ve $$\sin x=u$$ dersek $$\cos xdx=du$$ olur. O halde $$I=\int\frac{du}{1-u^2}=\int\left(\frac{A}{1-u}+\frac{B}{1+u}\right)du=\ldots$$

14, Ocak, 2017 murad.ozkoc (8,879 puan) tarafından  cevaplandı

Hocam burada $cosx\neq0$ koşulu gerekmez mi?

Kesinlikle evet. Bir kesrin pay ve paydasını belirli bir ifade ile çarpıp bölerken uygun koşullarda çalıştığımızı varsayıyoruz. Mesela burada bu yaptıklarımızı $$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$$ aralığında çalıştığımızı varsayarak yaptık veya siz $$\mathbb{R}\setminus\left\{\frac{\pi}{2}+k\pi|k\in\mathbb{Z}\right\}$$ kümesi üzerinde çalıştığınızı varsayarak yapabilirsiniz. Aksi takdirde yanlış sonuçlarla karşılaşabiliriz. Mesela şu örneği paylaşayım:

$$x=y$$

$$\Rightarrow$$

$$x^2=xy$$

$$\Rightarrow$$

$$x^2-y^2=xy-y^2$$

$$\Rightarrow$$

$$(x-y)(x+y)=y(x-y)$$

$$\Rightarrow$$

$$x+y=y$$

$$\Rightarrow$$

$$y+y=y$$

$$\Rightarrow$$

$$2=1$$

$0$ ile çarpıp bölmek burada yapılana benzer yanlış sonuçlara ulaşmamıza neden olabilir. Sadeleştirme yaparken mutlaka ama mutlaka sadeleştirilen ifadelerin $0$'dan farklı olup olmadıklarını kontrol etmeliyiz. Aksi takdirde burada olduğu gibi $$2=1$$ gibi saçma sapan bir sonuca ulaşırız.

2 beğenilme 0 beğenilmeme

$\int \sec x\, dx=\int \frac {\sec x(\sec x+\tan x)}{(\sec x+\tan x)}\, dx$

$u=\sec x+\tan x$ 

$du=(\sec x \tan x+\sec ^2 x) \,dx$

Buradan

$\int \frac {du}{u}=\ln \mid u \mid+c=\ln \mid \sec x+\tan x \mid+c$

15, Ocak, 2017 eynesi (648 puan) tarafından  cevaplandı
15, Ocak, 2017 eynesi tarafından düzenlendi

Burada $x\neq \frac{3\pi}{2}+2\pi.k,\quad k\in Z$ koşulu gerekmez mi acaba?

Belirsiz integral oldugu icin gerek yok sanirim...

...