Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
Toggle navigation
E-posta veye kullanıcı adı
Şifre
Hatırla
Giriş
Kayıt
|
Şifremi unuttum ne yapabilirim ?
Anasayfa
Sorular
Cevaplanmamış
Kategoriler
Bir Soru Sor
Hakkımızda
$[a,b]$ araliginda surekli bir $f$ fonksiyonun integrali ve $\lim\limits_{n \to \infty} \sum\limits_{i=1}^n\frac{b-a}n f\left(a+\frac {(b-a)i}n\right)$ degeri
2
beğenilme
0
beğenilmeme
685
kez görüntülendi
$f: [a,b] \to \mathbb R$ surekli olsun. Bu durumda Riemann integrali her zaman $$\lim\limits_{n \to \infty} \sum\limits_{i=1}^n\frac{b-a}n f\left(a+i\frac {(b-a)}n\right)$$ degerine esit olur mu?
riemann-toplamı
integral
riemann-integrali
15 Eylül 2016
Lisans Matematik
kategorisinde
Sercan
(
25.5k
puan)
tarafından
soruldu
|
685
kez görüntülendi
cevap
yorum
Bu zaten Riemann integralinin, $\int_a^bf(x)dx$ 'nin tanımı değil mi?
Tanimi tum parcalanislari hesaba katarak infimum ve supremum degerlerinin esit olmasi...
Lütfen yorum eklemek için
giriş yapınız
veya
kayıt olunuz
.
Bu soruya cevap vermek için lütfen
giriş yapınız
veya
kayıt olunuz
.
0
Cevaplar
İlgili sorular
Sürekli bir $f$ fonksiyonu için $\int_{[0,1]}f =\lim\limits_{n\to \infty}\sum\limits_{i=1}^n\frac{1}{n}f\left(\frac{i}{n}\right)$ eşitliği her zaman sağlanır mı?
$S_n=\displaystyle\sum\limits_{k=1}^n\left(\frac{k^2}{n^3}\right)$ olduguna gore $\lim\limits_{n \to \infty} S_n$ degeri kactir?
$\displaystyle\lim\limits_{n\to \infty} \int_0^1 \int_0^1...\int_0^1 \cos^2\left(\frac{\pi}{2n}(x_1+x_2+...x_n)\right)dx_1 dx_2...dx_n$
riemann integrali, $\lim \frac {1} {n}\displaystyle\sum _{k=1}^{n}f\textstyle\left( \frac {k} {n}\right) =\displaystyle\int _{0}^{1}f\left( x\right) dx$ ispatı
Tüm kategoriler
Akademik Matematik
742
Akademik Fizik
52
Teorik Bilgisayar Bilimi
31
Lisans Matematik
5.5k
Lisans Teorik Fizik
112
Veri Bilimi
144
Orta Öğretim Matematik
12.7k
Serbest
1k
20,279
soru
21,810
cevap
73,492
yorum
2,475,677
kullanıcı