Asal idealden kurtulma

0 beğenilme 0 beğenilmeme
61 kez görüntülendi
$R$ değişmeli bir halka $I$ bu halkanın bir ideali, $\mathfrak{p}_1,\cdots,\mathfrak{p}_n$ de asal idealler olsun. Aşağıdaki önermelerin birbirine denk olduğunu kanıtlayın:

1- $$I\subseteq\bigcup_{i=1}^n\mathfrak{p}_i$$;
2- $I$ ideali $\mathfrak{p}_i$ asal ideallerinin birisi tarafından içerilir.

not: elbette 2'nin 1'i gerektirdiği gün gibi aşikar.
15, Şubat, 2015 Lisans Matematik kategorisinde Safak Ozden (3,384 puan) tarafından  soruldu

1 cevap

2 beğenilme 0 beğenilmeme
Tumevarim ile ispati, n uzerinde:
$I \not \subset p_i \: (1 \leq i \leq n) \implies \: I \not \subset \cup_{i=1}^{n}p_i$
n=1 icin bariz dogru. Eger $n >1$ ise  $n-1$ icin dogru oldugunu kabu etmistik, o zaman her $i$ icin bir adet $x_i \in I - p_j$ vardir, $j \neq i$ olmak uzere. O halde
$y= \sum_{i=1}^{n}x_1x_2...x_{i-1}x_{i+1}x_{i+2}...x_n$
olarak $y$ elemanini alirsak: $y \in I-p_i$ olur, tum $1\leq i \leq n$ icin. O zaman $ \: I \not \subset \cup_{i=1}^{n}p_i$.

Introduction to Commutative Algebra kitabina da bakilabilir, proposition 1.11.
15, Şubat, 2015 Sercan (22,903 puan) tarafından  cevaplandı

Kanıtla ilgili ilk sorum, direkt kanıt verebilir miyiz?

İkinci sorum, şunu söylemek neden yanlış?

"Diyelim ki $x_1, x_2, \dots, x_n$ elemanları $p_1, p_2, \dots p_n$'in hiçbirinde bulunmasın"


Asal ideallerin birleşiminde yer alan ideal bir asal idealin içindedir
...