$Teorem:$ Gerçel sayılar kümesinin, uzunlukları toplamı 1 olan ve birleşiminin her kesirli sayıyı içeren aralıkları vardır.
$Kanıt:$ Kesirli sayılar kümesi $\mathbb{Q}$'nun sayılabilir sonsuzlukta olduğunu biliyoruz. Demek ki kesirli sayıları $q_0 , q_1 , . . . q_n, . . . $ diye numaralandırabiliriz. Her $n$ doğal sayısı için, uzunluğu $\frac{1}{2^{n+1}}$ olan $(q_n - \frac{1}{2^{n+2}} , q_n + \frac{1}{2^{n+2}})$ açık aralığını alalım. Bu aralıklar tüm kesirli sayıları içerir ve elbette uzunlukları toplamı $\frac{1}{2} + \frac{1}{4} + . . . = 1$'dir.
Ayrıca aralıkları daha da kısaltarak toplam uzunluğu $0$'dan büyük olmak koşuluyla dilediğimiz kadar küçültebiliriz.
$Soru:$ Kesirli bir sayı olmayan $\pi$'yi bu aralıkların dışında bırakabilir misiniz?