Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
647 kez görüntülendi

$5^\frac{x+1}{x}$ kaça eşittir?


$3^x(1+3^x)=30$ yaptım.Ama sağlayan x değeri bulamadım.

Orta Öğretim Matematik kategorisinde (876 puan) tarafından  | 647 kez görüntülendi

$3^{x}=t$ diyerek denklemi çözmeye çalısın. 

$3^x=5$ olmali. $5\cdot6=30$

Bende $15$ buldum:))

gözle log3 tabanında yazıp x i buldumda.doğrumu yoksa gereksizmi :)

1 cevap

0 beğenilme 0 beğenilmeme
En İyi Cevap

$3^x=a$ denirse $ a^2+a-30=0\Rightarrow (a+6)(a-5)=0\Rightarrow a=5,a=-6$   olur, fakat üstel sayı negatif olamayacağından . $a=5,x=log_35$ dir. İstenen $5^{\frac{log_35+log_33}{log_35}}= 5^{\frac{log_315}{log_35}}=5^{log_515}=15$ dir.

(19.2k puan) tarafından 
tarafından düzenlendi

Fakat $x=5$ degil hocam? $x=\log_35$ oluyor.

Evet haklısınız. Dalgınlık. Teşekkürler. 

20,284 soru
21,823 cevap
73,509 yorum
2,571,401 kullanıcı