$A/\mathfrak q \ne 0$ ve $A/\mathfrak q$ icerisindeki her sıfır bölen sıfırgüçlü ise $\mathfrak q$ ideali asallıdır

0 beğenilme 0 beğenilmeme
64 kez görüntülendi

$A$ bir halka olsun. 

Tanim: (asalli ideal) $\mathfrak q$ idealine asallıdır diyeceğiz eğer $\mathfrak q \ne A$ ise ve her $xy \in \mathfrak q$ için $x\in \mathfrak q$ ya da bir $n>0$ tam sayısı için $y^n \in \mathfrak q$ ise.

Sav: $\mathfrak q$ ideali asallıdır ancak ve ancak $A/\mathfrak q \ne 0$ ve $A/\mathfrak q$ icerisindeki her sıfır bölen sıfırgüçlü ise.

Asallı oldugunu kabul edersek
ilk koşul olan $A/\mathfrak q \ne 0$ sağlanır çünkü $q \ne A$.
ikinci koşul için $y+\mathfrak q \ne 0+ \mathfrak q$ olacak sekilde bir $y \in A$ elemani alalim ve $y+\mathfrak q$ elemani $A/\mathfrak q$ icerisinde sifir bolen olsun. Bu durumda $x+\mathfrak q \ne 0+\mathfrak q$ olacak sekilde bir $x+\mathfrak q$ elemani vardir ki $$(x+\mathfrak q)(y+\mathfrak q)=0+\mathfrak q$$ olur. Yani $$xy \in \mathfrak q$$ olur. Bu durumda $$x \in \mathfrak q \;\;\;\text{ ya da } \;\;\; \text{ bir $n>0$ tam sayisi icin } y^n\in \mathfrak q$$ yani $$x+\mathfrak q=0+\mathfrak q\;\;\;\text{ ya da } \;\;\; \text{ bir $n>0$ tam sayisi icin } y^n+\mathfrak q=0+\mathfrak q$$ olmali. Ilkinin dogru olmadigini kabul ettigimizden yukaridaki pozitif $n$ tam sayisi icin $$(y+\mathfrak q)^n=0+\mathfrak q$$ olmali.  Bu da $y+\mathfrak q$ elemaninin $A/\mathfrak q$ icerisinde sifirguclu olmasi demek.


Soru: Diger kismini nasil gosterebiliriz?

5, Temmuz, 2016 Lisans Matematik kategorisinde Sercan (23,839 puan) tarafından  soruldu
 (Affınıza  sığınarak); bu soruyu alıştırma olsun diye mi sordunuz yoksa ispatta bir  yerde sıkıntı yaşadığınız icin mi? 

Kendime alistirma gibi. Ara ara Atiyah'in ispatlarini yapmayi planliyorum. (kendim, bir sekilde). Bu sav dedigim tanimin akabindeki bir cumle aslinda.

sorudaki $q$ sembolünü nasıl yazdınız?

\mathfrak ile        

sağol Sercan.

Sercan'ın yazdığının üzerine sağ tıklayıp "Show Math as"e basarak da görebilirsin.

Çok Sağol Özgür. Bunu öğrendiğim iyi oldu.

1 cevap

1 beğenilme 0 beğenilmeme
 
En İyi Cevap
$A/q\neq 0$ olduğundan $q\neq A$. $xy\in q$ ve $x\notin q$ olsun.(Yani; $x+q\neq 0+q$). Buradan $(x+q)(y+q)=0+q$ ve eğer $y+q=0+q$ ise $y^{1}\in q$ olur ispat biter. Şayet $y+q\neq 0+q$ ise $y+q\in A/q$ bir sıfır bölen  ve  kabülden sıfır güçlü elemandır. Bu durumda $(y+q)^{n}=0+q$ olacak şekilde bir $n\in \Bbb{N}$ vardır. Bu ise ispatı tamamlar.
14, Temmuz, 2016 Handan (1,516 puan) tarafından  cevaplandı
14, Temmuz, 2016 Sercan tarafından seçilmiş
...