$A/q\neq 0$ olduğundan $q\neq A$. $xy\in q$ ve $x\notin q$ olsun.(Yani; $x+q\neq 0+q$). Buradan $(x+q)(y+q)=0+q$ ve eğer $y+q=0+q$ ise $y^{1}\in q$ olur ispat biter. Şayet $y+q\neq 0+q$ ise $y+q\in A/q$ bir sıfır bölen ve kabülden sıfır güçlü elemandır. Bu durumda $(y+q)^{n}=0+q$ olacak şekilde bir $n\in \Bbb{N}$ vardır. Bu ise ispatı tamamlar.