Sabit olmayan iki fonksiyonun bileşkesi sabit olabilir mi?

1 beğenilme 0 beğenilmeme
296 kez görüntülendi
20, Ocak, 2015 Lisans Matematik kategorisinde Enis (1,072 puan) tarafından  soruldu
20, Ocak, 2015 Enis tarafından düzenlendi
Eger fonksiyonlar uzerinde bir kisit yoksa oldukca kolay gorunuyor. Acaba unutulmus bir kosul mu var?
Oldukça kolay gerçekten,  belki bazı koşullar eklenerek zorlaştırılabilir. Bence bir incelik var bu soruda, o yüzden paylaşmak istedim.
O zaman soruyu İlham Aliyev'in yanıtını da göz önüne alarak şöyle zorlaştıralım. Her ikisi de sabit olmayan ve her ikisi de sürekli iki fonksiyonun bileşkesi sabit olabilir mi?

2 Cevaplar

4 beğenilme 0 beğenilmeme
Çok değişkenli fonksiyonlar için örnek bulmak daha kolaydır; örneğin,
\[f\left( x,y\right) =x^{2}+y^{2}\]
ve
\[x=\cos t\text{ ve }y=\sin t\]

fonksiyonlarını alalım. Her $t$ için

\[g\left( t\right) =f\left( \cos t,\sin t\right) =1\]
bulunur.

Tek değişkenliler için bir örnek ise şöyle kurulabilir;

\[f\left( x\right) =x^{2}\]
ve

$g(x)$ ise rasyonellerde $1$, irrasyonellerde $-1$ değerini alan bir fonksiyon olsun,
bu durumda her $x$ için
\[f\left( g\left( x\right) \right) =1\]
bulunur.
20, Ocak, 2015 İlham Aliyev (588 puan) tarafından  cevaplandı
22, Ocak, 2015 ayhandil tarafından düzenlendi
3 beğenilme 0 beğenilmeme
Her ikisi de  $C^{\infty}\left(\mathbb{R}\right)$ olan bir örnek:

$f(x)=x^2,\ g(x)=\begin{cases}e^{\frac1x}\quad x<0\\0\qquad x\geq0\end{cases}\quad g(f(x))=0\ \forall x\in\mathbb{R}$  (Sanıyorum her ikisi de ($\mathbb{R}$ de) analitik örnek bulunamaz)
21, Ocak, 2015 DoganDonmez (3,473 puan) tarafından  cevaplandı
22, Ocak, 2015 DoganDonmez tarafından düzenlendi
...