$f(x) = 2x^2 +mx+1$ parabolüne orijinden çizilen teğetleri birbirine dik olduğuna göre , m'nin pozitif değeri kaçtır?

0 beğenilme 0 beğenilmeme
5,523 kez görüntülendi


5, Mayıs, 2016 Orta Öğretim Matematik kategorisinde Şahmeran (1,235 puan) tarafından  soruldu

Bu sorunun benzeri sitede var diye hatırlıyorum.Araştırırmısınız?

Baktım hocam sanırım göremedim , Bu sefer 1 yerine -1 mi yazacağım? 

Ben biraz yoruldum. Daha sonra çözülmez ise bakarım. İyi geceler...

Peki hocam iyi geceler 

İşimi görmez olur mu hiç , teşekkürler 

1 cevap

2 beğenilme 0 beğenilmeme

Sayın @fotonyiyenadam'ın verdiği linkte; Bir parabole orijinden çizilen teğetler birbirine dik ise o parabole karşı gelen ikinci derece denklemin diskriminantının $-1$ olduğu ispatlanmış. Buna göre $2x^2+mx+1=0$ denkleminde $\Delta=b^2-4a.c=-1$ olmalıdır. Dolayısıyla $m^2-4.2.1=-1\Rightarrow m=\pm\sqrt7$   olur.

6, Mayıs, 2016 Mehmet Toktaş (18,827 puan) tarafından  cevaplandı

Teşekkürler hocam 

...