Madem bir haftadır cevap hatta segili fotonov dışında bir yorum bile yok. İlgi olmadığını söyleyemem 3 beğeni olduğuna göre sanırım birilerinin ilgisini çekmiş sorum. Neyse gelelim sorumuza.
Öncelikle zamana göre değişenleri bulalım, ilki çubuğun sıcaklığı, ikincisi çubuğun boyu. İlk olarak çubuğun sıcaklığını inceliyoruz, çünkü burada sıcaklık bağımsız değişken.
$\frac{\Delta T}{\Delta t}=\frac{T_S-T_t}{300}$ bağıntısı için $f:\mathbb{R}-\mathbb{R}^- \to \mathbb{R}^+$ ve $f(t)=T_S-T_t$ olacak şekilde bir fonksiyon tanımlayalım. Bağıntıda $f$ fonksiyonunu yerine koyarsak $\displaystyle \lim_{\Delta t \to 0} \frac{f(t)-f(t+\Delta t)}{\Delta t}=-f'(t)=\frac{f(t)}{300}$ olur. Düzenlersek $\frac{f'(t)}{f(t)}=(ln[f(t)])'=-\frac{1}{300}$ buluruz. Her iki tarafı $dt$'ye göre integre edersek $\displaystyle \int (ln[f(t)])'dt=-\int\frac{1}{300}dt\Rightarrow ln[f(t)]=-\frac{t}{300}+c\Rightarrow f(t)=e^{-\frac{t}{300}}.e^c$ buluruz. $c$ sabit sayısını daha elle tutulur bir hale getirebilmek için başta $f$ fonksiyonu hakkında bildiğimiz $f(0)=T_0$ eşitliğini kullanalım. $f(0)=e^{-\frac{0}{300}}.e^c=e^c=T_S-T_0$ bulmak çok da zor değil. O halde son kararımız, $f(t)=(T_S-T_0).e^{-\frac{t}{300}}$ olmalıdır.
Şimdi gelelim zurnanın detone olduğu yere. Sıcaklığı bulmakta değil, asıl marifet uzunluğu bulmakta.
$\Delta l=\frac{l_t. \Delta T}{500}$ bağıntısı için öncelikle $g:\mathbb{R}-\mathbb{R}^- \to \mathbb{R}^+$ ve $g(t)=l_t$ olacak şekilde bir fonksiyon tanımlayalım. Ardından bağıntının her iki tarafını $\Delta t$'ye bölersek $\frac{\Delta l}{\Delta t}=\frac{l_t}{500}.\frac{\Delta T}{\Delta t}$ bağıntısını elde ederiz. Bağıntıda $g$ ve önceden tanımladığımız $f$ fonksiyonunu yerine koyarsak $\displaystyle \lim_{\Delta t \to 0} \frac{g(t+\Delta t)-g(t)}{\Delta t}=g'(t)=-\frac{g(t)}{500}.f'(t)$ buluruz. Düzenlersek $\frac{g'(t)}{g(t)}=(ln[g(t)])'=-\frac{f'(t)}{500}$ eşitliğini elde ederiz. Her iki tarafı $dt$'ye göre integre edersek $\displaystyle \int(ln[g(t)])'.dt=-\int\frac{f'(t)}{500}dt\Rightarrow ln[g(t)]=-\frac{f(t)}{500}+k \Rightarrow g(t)=e^{-\frac{f(t)}{500}}.e^k$ buluruz. $k$ sabit sayısını biraz daha somutlaştırmak için önceden bildiğimiz $g(0)=l_0$ eşitliğini kullanalım. $g(0)=e^{-\frac{f(0)}{500}}.e^k=l_0\Rightarrow e^k=l_0.e^{\frac{f(0)}{500}}$ bulduk. O halde $g(t)=e^{\frac{-(T_S-T_0).e^{-\frac{t}{300}}}{500}}.l_0.e^{\frac{(T_S-T_0)}{500}}=e^{\frac{(T_S-T_0)(1-e^{-\frac{t}{300}})}{500}}.l_0$ olmalıdır.
Fonksiyonu bulduk. Şimdi geriye kalan tek şey birazcık hesaplama. Bulmamız gereken tek şey $g^{-1}(250)$ değerini bulmak. Bunun için $e^{\frac{300(1-e^{-\frac{t}{300}})}{500}}.200=250$ denkleminde $t$'yi çekip almak gerek.
$e^{\frac{300(1-e^{-\frac{t}{300}})}{500}}.200=250\Rightarrow \frac{300(1-e^{-\frac{t}{300}})}{500}=ln\frac{5}{4}\Rightarrow e^{-\frac{t}{300}}=1-\frac{5}{3}ln\frac{5}{4}$
$\Rightarrow -\frac{t}{300}=ln(1-\frac{5}{3}ln\frac{5}{4})\Rightarrow t=-300(ln(1-\frac{5}{3}ln\frac{5}{4}))$ olarak sade(!) bir gösterimle $t$'yi buluruz. Hesap makinesinden faydalanılırsa $t=139,51\ sn$ bulunur. Yani Sercan hoca ve Anıl'ın masa tenisi oynamak için $2$ dakika $19$ saniye $51$ salisesi var, iyi eğlenceler :)