$\sqrt {2}$

0 beğenilme 0 beğenilmeme
180 kez görüntülendi
$\sqrt {2}$ sayısının gerçel olduğunu ispatlayiniz.
5, Nisan, 2015 Lisans Matematik kategorisinde RAMANUJAN1729 (211 puan) tarafından  soruldu
18, Şubat, 2016 wertten tarafından yeniden kategorilendirildi

4 Cevaplar

0 beğenilme 0 beğenilmeme
 
En İyi Cevap
http://matkafasi.com/6332/%24-mathbb-r-%24-nin-tamligi 

bu soruya bakilabilir. 

$S=\{x \in \mathbb Q| x^2<2\}$ kumesinin supremumu $\sqrt{2}$ ve  kumenin supremumu $\mathbb{R}$'de olmali.
5, Nisan, 2015 Sercan (23,805 puan) tarafından  cevaplandı
5, Nisan, 2015 RAMANUJAN1729 tarafından seçilmiş

$x$ , $R$ nin elemanı olmasın :-)? 

farketmez. ikisinde de limit ayni.

bunada ispat adayı çıkardım ama , oldukça uzun :-)))

yazdığınız cevaba ulaşıyorum

0 beğenilme 0 beğenilmeme

Öncelikle gerçel sayının ne olduğunu hatırlayalım.

$$X=\{\langle a_n\rangle\mid \langle a_n\rangle, \,\ \mathbb{Q} \text{'da Cauchy dizisi}\}$$ olmak üzere

$$\beta=\{(\langle a_n\rangle,\langle b_n\rangle)\mid \lim\limits_{n\rightarrow \infty}(a_n-b_n)=0\}\subseteq X^2$$

bağıntısı bir denklik bağıntısıdır. Bu denklik bağıntısına göre oluşan denklik sınıflarının her birine bir gerçel sayı, denklik sınıflarının (gerçel sayıların) oluşturduğu oran (bölüm) kümesine de gerçel sayılar kümesi denir. Buna göre genel kuralı $$x_1=2, \,\ x_{n+1}=\frac{1}{2}\left(x_n+\frac{2}{x_n}\right)$$ olan $\langle x_n\rangle$ dizisi, $\mathbb{Q}$'da bir Cauchy dizisidir. Bu elemanın (dizinin) denklik sınıfı $$\sqrt{2}$$ ile gösterilir. O halde $\sqrt{2}$ bir gerçel sayıdır.

5, Nisan, 2015 murad.ozkoc (8,886 puan) tarafından  cevaplandı
14, Mart, 2016 murad.ozkoc tarafından düzenlendi

Bu bağintiyi kullanarak ve  rasyonel terimli bir dizi ile nasıl    irrasyonel   bir sayı elde ediyoruz  ve bu sayının  gerçel sayilar içinde nasıl var ettik ?yani varlığını kanıtladık , hocam çok kitabi bir ispat yaklaşımı yazdığınız çözümü detaylı  açarsaniz   sevinirim :-)

Daha ne kadar açık yazabilirim sayın hocam

doğru bölüm kümesi cümlesini atlamışım :-))


0 beğenilme 0 beğenilmeme

Bir de söyle bir kanıt verelim. $\mathbb{R}$ cisminde her Cauchy dizisinin limiti olduğundan ara değer teoremi doğrudur, yani eğer sürekli bir fonksiyon bir noktada pozitif başka bir noktada negatif oluyorsa bir sıfırı vardır. $f(x)=x^2-2$ fonksiyonu sürekli olduğundan bu fonksiyonun pozitif bir reel sayıda sıfır olması gerekir, bu da aradığımız $\sqrt{2}$ sayısıdır.

Bu kanıtta yukarıda verilen kanıtlardaki teknik detaylar ilk cümleye sıkıştırılmıştır.

5, Nisan, 2015 Salih Durhan (1,271 puan) tarafından  cevaplandı
7, Nisan, 2015 Salih Durhan tarafından düzenlendi

$R$  halkası yerine , cisim dememizde bir sakınca olmaz değil mi ?

varlığına dair güzel bir kanıt
Salih hocam, fonksiyonun sürekli olduğunu da göstermemiz gerekmez mi? Çok mu bariz?

polinom fonksiyonlar süreklidir

Tabi cisim demek daha gerekir. Düzeltiyorum. Polinomların sürekli fonksiyonlar tanımladığını kanıtlamak oldukça kolay olduuğu için bahsetmedim.

0 beğenilme 0 beğenilmeme

Bidiğimiz üzere $\sqrt{2}=1,144215...$ diye devam eder. Şimdi her terimi reel sayı olan şu diziye bakalım:

$a_1=1$

$a_2=1,1$

$a_3=1,14$

$a_4=1,144$

diye devam etsin. Bu dizinin her sonlu adımı bir sayıya biraz daha yaklaşır.Yani yakınsaktır.

http://matkafasi.com/6332/%24-mathbb-r-%24-nin-tamligi  ye göre her terimi reel olduğundan bu limit sayı reel sayıdır. Bu da aynen $\sqrt{2}$ ye eşittir.

5, Nisan, 2015 Cagan Ozdemir (676 puan) tarafından  cevaplandı

yakınsadığın dizinin kuralını eklersen güzel olur :-)

Her dizinin kuralı olmak zorunda mıdır?

evet, guzel bir soru? sendeyiz RAMANUJAN1729

Olmalıymış Sercan hocam , cevap geldi :-)
...