Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
Toggle navigation
E-posta veye kullanıcı adı
Şifre
Hatırla
Giriş
Kayıt
|
Şifremi unuttum ne yapabilirim ?
Anasayfa
Sorular
Cevaplanmamış
Kategoriler
Bir Soru Sor
Hakkımızda
$n>0$ olmak üzere $\Bbb{Z}_{n}$ halkasında asal ve indirgenmez elemanları belirleyen bir karakterizasyon var mı?
1
beğenilme
0
beğenilmeme
256
kez görüntülendi
10 Mart 2016
Akademik Matematik
kategorisinde
Handan
(
1.5k
puan)
tarafından
soruldu
|
256
kez görüntülendi
cevap
yorum
Lütfen yorum eklemek için
giriş yapınız
veya
kayıt olunuz
.
Bu soruya cevap vermek için lütfen
giriş yapınız
veya
kayıt olunuz
.
0
Cevaplar
İlgili sorular
$p$ asal tamsayı olmak üzere $\Bbb{Z}_{p}$ üzerinde monik indirgenmez ve kuadratik polinomların sayısı nedir?
$p$ herhangi bir asal olmak üzere $1-x+x^{2}-x^{3}+...+(-1)^{p-1}x^{p-1}$ polinomunun $\Bbb{Z}[x]$ de indirgenmez olduğunu gösteriniz.
$p$ asal olmak üzere $\Bbb{Q}_{(p)}=\{\frac {a}{b} \in \Bbb{Q} \mid p \nmid b\}$ kümesini gözönüne alalım. Rasyonel sayıların toplama ve çarpma işlemi altında $\Bbb{Q}_{(p)}$ halkasının lokal olduğunu gösteriniz.
$p$ sabit bir asal olmak üzere $\Bbb{Z}(p^{\infty})=\{\frac{a}{p^{n}} \in \Bbb{Q} \mid 0 \leq a <p^{n}, n\in \Bbb{N}\}$ halkasının Artinian olduğunu nasıl gösterebiliriz?
Tüm kategoriler
Akademik Matematik
742
Akademik Fizik
52
Teorik Bilgisayar Bilimi
31
Lisans Matematik
5.5k
Lisans Teorik Fizik
112
Veri Bilimi
144
Orta Öğretim Matematik
12.7k
Serbest
1k
20,284
soru
21,823
cevap
73,508
yorum
2,568,789
kullanıcı