2. dereceden denklemlerin formüllerinin ispatları

0 beğenilme 0 beğenilmeme
108 kez görüntülendi

$ax^{2}+bx+c=0\Rightarrow x_{1}+x_{2}=\dfrac {-b} {a},x_{i}x_{2}=\dfrac {c} {a}\\ X_{1}=\dfrac {-b+\sqrt [] {\Delta }} {2\cdot a} X_{2}=\dfrac {-b-\sqrt [] {\Delta }} {2\cdot a}\\ \Delta =b^{2}-4.ac$

$|x_1-x_2|=\frac{\sqrt \triangle}{|a|}$


bu formülleri nasıl ispatlarız.

7, Mart, 2016 Orta Öğretim Matematik kategorisinde Anıl Berkcan Türker (6,629 puan) tarafından  soruldu
2, Nisan, 2016 Anıl Berkcan Türker tarafından düzenlendi

3 Cevaplar

0 beğenilme 0 beğenilmeme
 
En İyi Cevap


$$(a\neq 0)(ax^2+bx+c=0)$$

$$\Rightarrow$$

$$x^2+\frac{b}{a}x+\frac{c}{a}=0$$

$$\Rightarrow$$

$$x^2+\frac{b}{a}x+\frac{b^2}{4a^2}-\frac{b^2}{4a^2}+\frac{c}{a}=0$$

$$\Rightarrow$$

$$x^2+\frac{b}{a}x+\frac{b^2}{4a^2}=\frac{b^2-4ac}{4a^2}$$

$$\Rightarrow$$

$$\left(x+\frac{b}{2a}\right)^2=\frac{b^2-4ac}{4a^2}$$

$$\Rightarrow$$

$$x+\frac{b}{2a}=\frac{\sqrt{b^2-4ac}}{2a} \,\,\ \vee \,\,\ x+\frac{b}{2a}=-\frac{\sqrt{b^2-4ac}}{2a}$$

$$\Rightarrow$$

$$x=\frac{-b+\sqrt{b^2-4ac}}{2a} \,\,\ \vee \,\,\ x=\frac{-b-\sqrt{b^2-4ac}}{2a}$$

7, Mart, 2016 murad.ozkoc (8,019 puan) tarafından  cevaplandı
22, Mayıs, 2016 murad.ozkoc tarafından düzenlendi

sitede en az 3 ispati vardi. su an en az 4 oldu :) 

kusurabakmayın bakıyorum ama bulamıyorum bugün baştan sona bi geziyim ozaman elimdeki sorularıda yazarım sağolun 

aradigim sorulari bulamamaktan ben de sikayetciyim.. google ile matkafasi .... yazip daha iyi arama yapilabiliyor.

bence ispatlar gibi yeni bir bölüm açılmalı yada bu tarz güzelde bir editörle bu iş çözülür gibi:=)

cevaba ekleme yaptım.

Eklemelerini lütfen yorum kısmına yazar mısın?

0 beğenilme 0 beğenilmeme

$x_{1}+x_{2}$ kökler toplamı ve $x_{1}.x_{2}$  kökler çarpımı için.


$(ax+b)(cx+d)=0$   denklemini ele alalım 

denklem kökleri $x_{1}=\dfrac{-b}{a}$  $x_{2}=\dfrac{-c}{d}$ olur.


$(ax+b)(cx+d)=Ax^2+Bx+C$ eşitliği olsun ; dağıtmayı yapıp birdaha bakalım,


$a.c.x^2+a.d.x+b.c.x+b.d=Ax^2+Bx+C$  


$a.c.x^2+(ad+bc).x+b.d=Ax^2+Bx+C$olur burda dikkat ederseniz

$A=a.c$

$B=ad+bc$

$C=b.d$    olurlar.

$\dfrac{B}{A}=\dfrac{a.d}{a.c}+\dfrac{b.c}{a.c}=\dfrac{d}{c}+\dfrac{b}{a}$ kökler toplamının toplamaya göre tersi ozaman


$-\dfrac{B}{A}=-\dfrac{a.d}{a.c}-\dfrac{b.c}{a.c}=-\dfrac{d}{c}-\dfrac{b}{a}$ kökler toplamı olur.



$\dfrac{C}{A}=\dfrac{b.d}{a.c}=(-\dfrac{b}{a}).(-\dfrac{c}{d})$ kökler çarpımı olur.




30, Mart, 2016 Anıl Berkcan Türker (6,629 puan) tarafından  cevaplandı
0 beğenilme 0 beğenilmeme

$|x_1-x_2|=\frac{\sqrt \triangle}{|a|}$ ispatı için  $\triangle$'nın ispatına başvuralım 

 $\triangle=b^2-4ac$  ve kökler ise     $x_1=\dfrac{-b-\sqrt \triangle}{2a}$   ,   $x_2=\dfrac{-b+\sqrt \triangle}{2a}$


$|x_1-x_2|=\left|\dfrac{-b-\sqrt \triangle}{2a}+\dfrac{b+\sqrt \triangle}{2a}\right|=\dfrac{\sqrt \triangle}{|a|}$ olarak ispatlanır.

2, Nisan, 2016 Anıl Berkcan Türker (6,629 puan) tarafından  cevaplandı
...