Halkamiz: $A$, minimal asal idealimiz: $P$ ve icinde ki siradan elemanimiz da: $s$ olsun.
$A$'yi ilk olarak $A_P=A-P$ ile yerellestirelim. Bu yerellesitme $Y$ olsun.
O zaman $PA_P$ bunun tek maksimal idealidir. (Yerellestirmenin mantigi.)
Bir de $P$ minimal asal ideal, o zaman bu $PA_P$ idealimiz $Y$ icindeki tek asal ideal olmali.
O zaman sifirguclu grup dedigimiz asal ideallerin kesisimi oldugundan ve tek asal idealimiz oldugundan $PA_P$'nin elemanlari sifir gucludur.
$s/1$ elemani bu asal idealin icerisinde, o zaman sifir guclu olmali, yani bir adet tam sayi $n>0$ var ki $s^n/1=(s/1)^n=0/1 := 0$ olmali. O halde bir adet $t \in A_P$ var ki $t(s^n\cdot1-0\cdot1)=0$ olmali. Yani $(ts^{n-1})s=0$. Bu da bize $s$'in sifir bolen oldugunu verir.
Ek olarak: $P=\{0\}$ da olabilir. O zaman $Y$ bir cisim olur.
$P=\{0\}$ ideali de her zaman asal ideal olacak diye bir durum soz konusu degil. Sifir olmayan sifir bolen bir eleman varsa eger, bu $P=\{0\}$'nin asal olmamasi icin yeterli.