Her $(x_1,y_1),(x_2,y_2)\in A$ için $f(x_1,y_1)=f(x_2,y_2)\Rightarrow (x_1,y_1)=(x_2,y_2)$ olduğunu göstermeliyiz.
$f(x_1,y_1)=f(x_2,y_2)\Rightarrow (\frac{x_1}{|x_1|+|y_1|},\frac{y_1}{|x_1|+|y_1|})=(\frac{x_2}{|x_2|+|y_2|},\frac{y_2}{|x_2|+|y_2|})= (x_1,y_1)=(x_2,y_2)$ dir.
Bezer olarak her $(x_1,y_1),(x_2,y_2)\in B$ için $g(x_1,y_1)=g(x_2,y_2)\Rightarrow (x_1,y_1)=(x_2,y_2)$ olduğunu göstermeliyiz.
$g(x_1,y_1)=g(x_2,y_2)\Rightarrow (\frac{x_1}{\sqrt{x_1^2+y_1^2}},\frac{y_1}{\sqrt{x_1^2+y_1^2}})=(\frac{x_2}{\sqrt{x_2^2+y_2^2}},\frac{y_2}{\sqrt{x_2^2+y_2^2}})$ buradan,
$ (x_1,y_1)=(x_2,y_2)$ olur. Yani her iki fonksiyon da birebirdir.