Cauchy dizisi

0 beğenilme 0 beğenilmeme
63 kez görüntülendi

''$\left( x_{n}\right) _{n}$ dizisinin Cauchy olduğunu kanıtlamak için $\left| x_{k+1}-x_{k}\right| <\varepsilon$ ifadesini (ardışık terimlerin farkını) küçük yapmak yetmez XXX(NEDEN?)XXX ,çünkü $\left| x_{k+1}-x_{k}\right| <\varepsilon$ ifadesi çok küçük olsa da $\left| x_{n}-x_{m}\right| <\varepsilon$ çok küçük olmayabilir.''

Yazar tam olarak ne demeye çalışıyor burada ?

1, Kasım, 2015 Lisans Matematik kategorisinde ferhanviran (85 puan) tarafından  soruldu

Anladım. 

          $a_{n} =\dfrac {1} {n+1}$ ifadesinde $a_{n}$ dizisi yakınsak olmasına rağmen,

     $1+\dfrac {1} {2}+\ldots .+\dfrac {1} {n+1}$ ifadesi sonsuza gider.

1 cevap

0 beğenilme 0 beğenilmeme
Ardışık terimlerin arasındaki fark çok küçük olsa da ardışık olmayan terimlerin arasındaki fark çok küçük olmayabilir.
2, Kasım, 2015 Safak Ozden (3,375 puan) tarafından  cevaplandı

Örnek verebilir misiniz?

...