Bilindiği gibi tavla oyununda kullanılan (atılan) zarlar,genellikle özdeş ve hatasız dır. İşte böyle bir çift zar (yani özdeş ve hatasız iki zar) atıldığında her iki zarın üst yüzlerine gelen sayılar toplamının $5$ olması olasılığı kaçtır?
NOT: Genellikle kaynaklarda bunun cevabı: Olay küme $A$ ise $A=\{(1,4),(4,1),(2,3),(3,2)\}$ olarak alınıp $s(A)=4$, Evrensel küme(örneklem uzay) da $E$ ise $E=\{(1,1),(1,2),(1,3),...,(6,6)\}$ olarak alınıyor ve $P(A)=\frac{s(A)}{s(E)}=\frac{4}{36}=\frac 19$ bulunuyor. Böyle bir çözüm yanlış değil mi? Çünkü $(1,2) ile (2,1) ; (1,3) ile (3,1);...,(5,6) ile (6,5)$ aynı değiller mi? s(E)=21 olması gerekmez mi?
Dolayısıyla istenen olasılığında $\frac {2}{21}$ olması gerekmez mi? Teşekkürler.