Bir pozitif tamsayıdan küçük olup o sayı ile aralarında asal olan pozitif tamsayıların sayısı

3 beğenilme 0 beğenilmeme
108 kez görüntülendi

Diyelim ki $n\in \mathbb{Z}^{+}$ sayısının asal çarpanlarına ayrılmış hali $$n=p_1^{e_1}\dots p_r^{e_r}$$ olsun. $A_i$ kümesini $\{m\mid m=1,2,\dots,n\ \&\ p_i| m\}$ olarak tanımlayalım. Diğer bir deyişle, $A_i$ kümesi $p_i$ asalı tarafından bölünen $1,2,\dots,n$ elemanlarından oluşsun. Gösteriniz ki, $$|A_i|=n/p_i$$ eşitliği sağlanır. Dahası birbirinden farklı $i$ ve $j$ indisleri için, $$|A_i\cap A_j|=n/p_ip_j$$ eşitliği sağlanır. Tabii ki bunu genelleştirmek mümkün.

Bunu kullanarak, $n$ sayısından küçük olup $n$ ile aralarında asal olan pozitif tamsayıların sayısının $$\phi(n):=n\bigg(1-\frac{1}{p_1}\bigg)\dots\bigg(1-\frac{1}{p_r}\bigg)$$ olduğu sonucu çıkarın.

30, Eylül, 2015 Lisans Matematik kategorisinde Enis (1,066 puan) tarafından  soruldu

bu soruya Sn. Sercan cevap vermişti sanırım sitede olması lazım 

1 cevap

1 beğenilme 0 beğenilmeme

Eski soruyu bulamadigimdan bu soruya cevabi yazayim: 

$p$ asali $n$ sayisini tam bolsun. Bu durumda $p$ asalinin arada bir degeri bolme olasiligi $$\frac1p$$ ve bolmeme olasiligi $$1-\frac1p$$olur. Bu durumda hicbir asal carpanina bolunmeme olasiligi $$\left(1-\frac1{p_1}\right)\cdots\left(1-\frac1{p_r}\right)$$ olur ve $\phi(n)$ tanimindan bu olasilik $$\frac{\phi(n)}{n}$$ degerine esit.

12, Aralık, 2016 Sercan (22,513 puan) tarafından  cevaplandı
12, Aralık, 2016 Sercan tarafından düzenlendi
...