Çemberin yarıçapını bozmadan, kirişler çokgeninin kenarlarının sırasını değiştirmek mümkündür. Hatta bu sıra değişikliği çokgenin alanını da değiştirmez. Buna göre aşağıdaki çizimi yapalım:
Simetriden dolayı $|AD|=2r$ çap olur. Çapı gören çevre açılardan $m(\widehat{ABD})= m(\widehat{ACD})=90^\circ $ olur. Pisagor teoreminden $|BD|=\sqrt{4r^2-7^2 }$ ve $|AC|=\sqrt{4r^2-2^2 }$ olur. Ayrıca $ABCD$ kirişler dörtgeninde Ptolemy teoremi olarak bilinen, köşegenlerin uzunluklarının çarpımı, karşılıklı kenar uzunluklarının çarpımına eşittir kuralını uygularsak $|AC|\cdot |BD| = |AD|\cdot |BC| + |AB|\cdot |CD| $ olup $$ \sqrt{4r^2-2^2}\cdot \sqrt{4r^2-7^2 } = 2r\cdot 11 + 2\cdot 7 $$ denklemi elde edilir. Her iki tarafın karesini alırsak
$(4r^2-2^2)(4r^2-7^2) = (22r + 14)^2$
$\implies 16r^4 -4\cdot 53 r^2 + 2^2\cdot 7^2 = 4\cdot 121r^2 + 4\cdot 11 \cdot 14 r + 14^2$
$\implies 2r^4-87r^2-77r=0$
$\implies r(2r^3 -87r -77)=0$ olur. $r>0$ olduğunu göz önüne alarak
$2r^3 - 98r +11r -77=0$ yazılabilir. Çarpanlara ayırarak
$\implies 2r(r^2 -49)+ 11(r-7)=0$
$\implies (r-7)(2r^2 + 7r +11)=0$
elde ederiz. $2r^2 + 7r +11=0$ denkleminin kökleri negatiftir. Dolayısıyla tek çözüm $r=7$ olur.