$\displaystyle\lim_{x\to a}f(x)=b $ ve $\displaystyle\lim_{t\to b}g(t)=L $ iken (her zaman) $\displaystyle\lim_{x\to a}g(f(x))=L $ (yani $\displaystyle\lim_{x\to a}g(f(x))=\lim_{t\to b}g(t) $ ) olmasını sağlayacak bir koşul bulun.

1 beğenilme 0 beğenilmeme
135 kez görüntülendi

http://matkafasi.com/22861/mathbb-displaystyle-displaystyle-displaystyle-displaystyle

sorusu ile ilgili. Yani:

($ a,b,L\in\mathbb{R} $ olmak üzere) 

  1. $\displaystyle\lim_{x\to a}f(x)=b  $ ve 
  2. $\displaystyle\lim_{t\to b}g(t)=L  $ 
  3. ...............
iken (her zaman) $\displaystyle\lim_{x\to a}g(f(x))=L  $ (yani $\displaystyle\lim_{x\to a}g(f(x))=\lim_{ t\to b}g(t)  $ ) olacak şekilde (olabildiğince basit) bir 3. madde bulun.
20, Eylül, 2015 Lisans Matematik kategorisinde DoganDonmez (3,341 puan) tarafından  soruldu

1 cevap

1 beğenilme 0 beğenilmeme
 
En İyi Cevap

$\epsilon >0$ olsun. $\lim\limits_{y\to a}f(y)=b$ oldugundan bir adet $\delta_f>0$  bulabiliriz ki $$0<|y-a|<\delta_f$$ kosulunda $$|f(y)-b|<\epsilon$$ saglanir ve $\lim\limits_{x\to b}g(x)=L$ oldugundan bir adet $\delta_g>0$  bulabiliriz ki $$0<|x-b|<\delta_g$$ kosulunda $$|g(x)-L|<\epsilon$$ saglanir.

1) Simdi $g$ fonksiyonunun $x=b$ noktasinda surekli oldugunu kabul edelim. Bu durumda $g(b)=L$ esitligi saglanir. Yani eger $$|x-b|<\delta_g$$  kosulu saglnirsa  $$|g(x)-L|<\epsilon$$ saglanir. Bu durumda $$0<|y-a|<\delta_f$$ kosulunda ($x=f(y)$) $$|g(f(y))-L|<\epsilon$$ saglanir.

2) Eger $b$ noktasini iceren bir $I$ acik araliginda $x=b$ disindaki tum $x$ elemanlari icin $f(x) \ne a$ saglaniyorsa istenilen esitlik dogru olur.Ayni sekilde ispat edilebilir.

Ilgili sorudaki cevapta bu ikisi saglanmiyor. Zaten saglansa ters ornek olmazdi.

20, Eylül, 2015 Sercan (22,582 puan) tarafından  cevaplandı
21, Eylül, 2015 DoganDonmez tarafından seçilmiş
...