Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
1 beğenilme 0 beğenilmeme
775 kez görüntülendi

Vektörel çarpım neden paralel kenarın alanına eşittir ?

Lisans Matematik kategorisinde (1.5k puan) tarafından  | 775 kez görüntülendi

1 cevap

0 beğenilme 0 beğenilmeme

A ve B vektör olmak üzere

$A=(a_{1}, a_{2}, a_{3})$ ve $B=(b_{1}, b_{2}, b_{3})$ olmak üzere axb vektörünü bulunuz.

$AXB =\begin{array}{ccc}e_{1} &e_{2} &e_{3}\\a_{1} & a_{2} & a_{3}\\b_{1} &b_{2}&b_{3} \end{array}$

İfadenin determinantı bize AXB vektörünü verir.

Alan ise $||AXB||$ olacağından $AXB =\begin{array}{ccc}e_{1} &e_{2} &e_{3}\\a_{1} & a_{2} & a_{3}\\b_{1} &b_{2}&b_{3} \end{array}$ İfadesinin determinantının başkatsayılarının kareler toplamına eşittir.

(11.1k puan) tarafından 

Neden hocam ben onu anlamıyorm alana niye eşit nasıl çıkmıs merak ettiğim bu integral rieman toplamlarla ortalığa geliyor bu nasıl geliyor merak ettiğim bu nerden cıkmıs paralel kenarın alanı niye öyle tanımlanmıs

20,344 soru
21,898 cevap
73,633 yorum
3,434,941 kullanıcı