$\tilde K$ cismini $ \mathcal O_P/P$ cismine nasil gomebiliriz?

1 beğenilme 0 beğenilmeme
47 kez görüntülendi

$P$ kumesi $F/K$ fonksiyon cisminin bir yerleskesi olsun ve $\mathcal O_P$ de bu yerleskeye karsilik gelen deger halkasi olsun. $P$ yerleskesi $\mathcal O_P$ yerel halkasinda (biricik) maksimal ideal oldugundan $\mathcal O_P/P$ kalan sinif halkasi cisim olmali$^*$. Her $x\in \mathcal O_P$ icin $x(P)\in\mathcal O_P/P$ elemanini $x$ elemaninin mod-$P$ kalan sinifi olarak tanimlayalim ve her $x \in F\backslash \mathcal O_P$ icin de $x(P):=\infty$ olarak tanimlayalim$^{**}$. (Burda $\infty$ ile ayrik degerlendirme taniminda kullandigimiz $\infty$ fakli manada,fonksiyonlarimiz farkli fonksiyonlar). 

Gosteriniz: $^*$ ile isaretlenen cumlede cisim oldugunu nasil cikardik? Bununla ilgili teoremi yaziniz ve ispati icin bir referans veriniz.

Gosteriniz: $^{**}$ ile isaretlenen $x \in F\backslash \mathcal O_P$ icin de $x(P):=\infty$ olarak tanimlayalim cumlesi ne anlama geliyor.

Gosteriniz: $K \in \mathcal O_P$ oldugundan ve $K\cap P=\{0\}$ oldugundan $K$ cismini $\mathcal O_P/P$ cismi icine gomebiliriz. Burda $\mathcal O_P \to \mathcal O_P/P$ dogal (canonical) fonksiyonu kullabilirsiniz. Hatta bunu $K$ yerine $\tilde K$ icin de soyleyebiliriz. Yani $\tilde K$ cismini $\mathcal O_P/P$ cismi icine gomebiliriz. Ayrica bir cismi dogal bir sekilde baska bir cisimin icine gommenin ne anlama gelecegini belirtiniz.

27, Ağustos, 2015 Akademik Matematik kategorisinde Sercan (22,506 puan) tarafından  soruldu
21, Ocak, 21 Sercan tarafından yeniden açıldı

kitabin diger sorulari icin linkteki ilk cevaba bakabilirsiniz.

1 cevap

0 beğenilme 0 beğenilmeme
$R$ halkasi degismeli ve birimli bir halka olsun. $R$ halkasinin $M$ ideali maksimaldir ancak ve ancak $R/M$ halkasi cisimdir. (Finite Fields - Lidl & Niederreiter - Teorem 1.47-a)

$\mathcal O_P$ halkasinin disindaki elemanlari gormezden gelme, hepsini bir gorme, kisacasi sallamama anlamina geliyor.

(link) $\tilde K \subset \mathcal O_P$ oldugundan dolayi $\mathcal O_P\to \mathcal O_P/P$ dogal fonksiyonunu $\tilde K \to \mathcal O_P/P$ olacak sekilde tanim kumesini $\tilde K$ olarak sinirlayabiliriz ve bu fonksiyonun cekirdegi $\tilde K \cap P=\{0\}$ oldugundan dolayi $\{0\}$ olmali. Bu da fonksiyonun birebir oldugunu soyler. Kisacasi $\tilde K$ cisminin her elemanini (biricik bir sekilde) $\mathcal O_P/P$ cisminin icerisine gomduk. Bu da $\tilde K$ cisminin bir kopyasinin/benzerinin $\mathcal O_P/P$ cisminin icerisinde bulundugunu soyler. Yani $\tilde K$ cismi $\mathcal O_P/P$ cisminin bir alt cismine izomorf. 
28, Ağustos, 2015 Sercan (22,506 puan) tarafından  cevaplandı
28, Ağustos, 2015 Sercan tarafından düzenlendi
...