Sadece sonlu sayıdaki sanal ikinci dereceden sayı cismi Öklid bölgesi olabilir.

0 beğenilme 0 beğenilmeme
106 kez görüntülendi

$d$ tam kare içermeyen (square-free) negatif bir tam sayı olmak üzere, $\mathbb{Q}(\sqrt{d})$ şeklindeki genişlemelere sanal ikinci dereceden sayı cismi (imaginary quadratic number field) adı verilir.

Görüldüğü üzere bunlardan sonsuz tane var. Ama sadece sonlu tanesi Öklid bölgesi (Euclidean domain) olabilir. Hangileri?

3, Ağustos, 2015 Akademik Matematik kategorisinde Enis (1,075 puan) tarafından  soruldu
3, Ağustos, 2015 Enis tarafından düzenlendi

kuadratik: derecesi iki olan.

Ben soruyu anlayamadım ama.

$\mathbb Z[\sqrt{-m}]$'ler, Öklit bölgesi, pozitif kare-serbest $m$'ler, sonlu?

Biraz daha açmaya çalıştım.

Oh yahu.                                 

Cisimde zaten sıfır olmayan ger eleman birim değil mi? $\mathbb Q$ mu olacak, $\mathbb Z$ mi? İçerdiği dedekind desem (her asal maksimal olduğundan) o da Öklit. 

...