Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
411 kez görüntülendi
$\int \sqrt{1+x^4} dx$

Kökten kurtulmak için aklıma $1+$tan$^2x=$sec$^2x$ ifadesini kullanmak geldi

$x^4=tan^2x \to x=| \sqrt{tanx}|$ oluyor sanırsam. Bence, elde ettiğim ifade pek iç açıcı değil. Başka bir yöntem mi denemeliyim?
Lisans Matematik kategorisinde (234 puan) tarafından  | 411 kez görüntülendi
Bunun sonucu elementer ("bildiğimiz") bir fonksiyon değil, "eliptik" bir fonksiyon.
Hocam, bir integralin çözülüp çözülemeyeceğini nasıl anlayabilirim. Ben gördüğüm her integral için hemen işleme başvuruyorum. Yukarıda yaptığım gibi ve sonuç alamayınca düşünüyorum
20,284 soru
21,823 cevap
73,508 yorum
2,568,863 kullanıcı