Tribonacci üçgeni,
$1$
$1-1$
$1-3-1$
$1-5-5-1$
$1-7-13-7-1$
$1-9-25-25-9-1$
ve bu şekilde ilerleyen bir üçgendir ve Pascal üçgeninden farklı olarak yeni satırdaki bir sayı, üstündeki iki sayının toplamı değil üç sayının toplamı olacak şekilde oluşturulmuştur. Örneğin $25=5+7+13$ ve $9=1+1+7$'dir. Eğer $m.$ satır ve $n.$ sütundaki sayının değeri $f(m,n)$ dersek $f(m,1)=f(m,m)=1$ ve $m> n\geq 2$ için $$f(m,n)=f(m-1,n-1)+f(m-1,n)+f(m-2,n-1)$$ indirgemeli dizisini elde ederiz. Peki Pascal üçgeninde olduğu gibi bu indirgemeli dizinin formülünü bulabilir miyiz? İki bilinmeyenli olduğundan OEIS'den kontrol edemiyorum.