Normal uzayların kapalı altuzaylarının da normal olduğunu gösteriniz.

0 beğenilme 0 beğenilmeme
28 kez görüntülendi

Teorem: $(X,\tau)$ topolojik uzay ve $A\subseteq X$ olmak üzere

$$((X,\tau), \text{ normal uzay})(A\in \mathcal{C}(X,\tau))\Rightarrow (A,\tau_A), \text{ normal uzay}$$ olduğunu gösteriniz.

3, Aralık, 3 Lisans Matematik kategorisinde murad.ozkoc (9,032 puan) tarafından  soruldu

1 cevap

0 beğenilme 0 beğenilmeme

$(X,\tau)$ bir normal topolojik uzay, $A\subseteq X$  olsun. $X$ bir $T_1$   uzayı olduğundan (çünkü her normal uzay $T_1$  uzayıdır: ( $T_1$ Uzayı:Bir $(X,\tau)$ topolojik uzayının farklı iki noktası verildiğinde bu noktaların herbirinin diğerini içermeyen bir komşuluğu varsa uzaya $T_1$  uzayı denir, ) , ve bu uzayın alt kümesi de $T_1$  olduğundan(Bakınız) $A$  da bir $T_1$  uzayıdır. $A$   kapalı olduğundan , $A$ nın bir  $F$  alt kümesinin kapalı olması için gerek ve yeter şart $F$  nin  $X$  de kapalı olmasıdır. O zaman  $F$  ve  $F'$   $X$  de kapalı alt kümeler ise  $X$  de ayrık kümelerdir çünkü $X$  normal olduğundan bu tür kümeler mevcuttur. $X$ normal olduğundan  $F\subset U, F'\subset V$     ve  $U\cup V=\emptyset$   olacak şekilde  $U$   ve   $V$  açıkları vardır.  Diğer taraftan $F\subset A\cap U,  F'\subset A\cap V$   ve  $A\cap U, A\cap V$  kümeleri   $A$  nın ayrık alt kümeleridir ve $A$ da açıktırlar. Sonuç olarak  $(A,\tau_A)$  normal uzaydır.

4, Aralık, 4 alpercay (1,303 puan) tarafından  cevaplandı
4, Aralık, 4 alpercay tarafından düzenlendi
...