lineer dönüşümün tersinirliği

0 beğenilme 0 beğenilmeme
45 kez görüntülendi

Bir lineer dönüşüm tersinirdir ancak ve ancak 1-1 ve örtense önermesinin ispatı nasıl yapılır

25, Kasım, 25 Lisans Matematik kategorisinde hande516 (13 puan) tarafından  soruldu
25, Kasım, 25 alpercay tarafından yeniden kategorilendirildi

Lineer dönüşüm dediğimiz şey de nihayetinde bir tür fonksiyondur.

Teorem: Bir $f$ fonksiyonunun $f^{-1}$ ters fonksiyonuna sahip olması için gerek ve yeter şart $f$ nin bire bir ve örten olmasıdır. 

Buna göre, $T:V \to W$ bir lineer dönüşüm ve $T^{-1}: W \to V $ ters dönüşüm olsun. Yukarıdaki teorem gereğince $T$ bire bir ve örtendir.

Şimdi de  $T:V \to W$ bir lineer dönüşüm ve $T$ bire bir örten olsun.  $T^{-1}: W \to V $ ters fonksiyonu vardır. Gösterilmesi gereken, bu ters fonksiyonun da lineer dönüşüm olduğunu ispatlamaktır. Yani $T^{-1}(c_1\vec{a} + c_2\vec{b})=c_1T^{-1}(\vec{a})+c_2T^{-1}(\vec{b})$ gibi bir eşitlik var mıdır? Bunu ispatlayabilirseniz probleminiz tamamlanıyor. Son vuruşu size bırakalım.

Lokman bey'e ek olarak kernel analizi de yapabiliriz, linear dönüşüm dediğiniz için linear cebir içerisinde kalıyor:

kerneli şöyle tanımlayalım, $T:V\to W$ linear dönüşümünün kerneli $ker(T)=\{v\in V \;|\; T(v)=0_W\}$

eğer bu altuzayın dimension(boyut'u) 0 ise yani kernelde sadece $\{0\}$ varsa birebir diyebiliyoruz.



...