$\displaystyle\int_0^\infty \frac{\text{sin}x}{x} dx=?$

1 beğenilme 0 beğenilmeme
350 kez görüntülendi
24, Ocak, 2015 Lisans Matematik kategorisinde Enis (1,075 puan) tarafından  soruldu
24, Ocak, 2015 Enis tarafından düzenlendi

2 Cevaplar

4 beğenilme 0 beğenilmeme
$\frac{\sin x}{x}$ fonksiyonu çift olduğundan $$\int_{0}^{\infty}\frac{\sin x}{x}dx=\frac{1}{2}\int_{-\infty}^{\infty}\frac{\sin x}{x}dx$$ dir. $$\int_{-\infty}^{\infty}\frac{\sin x}{x}dx=\Im{\int_{-\infty}^{\infty}\frac{e^{ix}}{x}dx}$$ ve kompleks kontür integrasyon tekniği ile $$\int_{-\infty}^{\infty}\frac{e^{ix}}{x}dx=i\pi$$ olarak bulunduğundan $$\int_{0}^{\infty}\frac{\sin x}{x}dx=\frac{\pi}{2}$$ dir.
25, Ocak, 2015 ugurgul (108 puan) tarafından  cevaplandı
11 beğenilme 0 beğenilmeme
Yukarıdaki çözümdeki

\[\int_{-\infty }^{\infty }\frac{\cos x}{x}dx\]
ıraksak olduğundan
\[\int_{-\infty }^{\infty }\frac{e^{ix}}{x}dx\]
integrali de ıraksaktır (kontür integral tekniği dikkatli kullanılmalıdır).

Bu çözümde

\[\int_{-\infty }^{\infty }\frac{\sin x}{x}dx=\frac{\pi }{2}\]
eşitliğini Reel analiz metodları ile gösterelim. Kullanacağımız bilgiler:

1) Riemann-Lebesque lemması : $f$, $\left( a,b\right) $ aralığında integrallenen ise,
\[\lim_{p\rightarrow \infty }\int_{a}^{b}f\left( x\right) \sin pxdx=0.\]

2) $\frac{1}{2}+\cos x+\cos 2x+...+\cos nx=\frac{\sin \left( \frac{2n+1}{2}%
x\right) }{2\sin \frac{x}{2}}.$

Sonuncu eşitlikten, her $n\in \mathbb{N}$ için

\[
\int_{0}^{\pi }\frac{\sin \left( \frac{2n+1}{2}x\right) }{2\sin \frac{x}{2}}%
dx=\frac{\pi }{2}
\]
elde edilir.

Ayrıca
\[\frac{1}{x}-\frac{1}{2\sin \frac{x}{2}}\]

fonksiyonunun $\left( 0,\pi \right) $ aralığında integrallenen olduğu kolayca görülür.

Riemann-Lebesque lemmasına göre,

\[
\lim_{n\rightarrow \infty }\int_{0}^{\pi }\left( \frac{1}{x}-\frac{1}{2\sin
\frac{x}{2}}\right) \sin \left( \frac{2n+1}{2}x\right) dx=0
\]

olur. Buradan

\[
\lim_{n\rightarrow \infty }\int_{0}^{\pi }\frac{\sin \left( \frac{2n+1}{2}%
x\right) }{x}dx=\lim_{n\rightarrow \infty }\int_{0}^{\pi }\frac{\sin \left(
\frac{2n+1}{2}x\right) }{2\sin \frac{x}{2}}dx=\frac{\pi }{2}
\]

çıkar (son eşitliği yukarıda hesaplamıştık). Şimdi $y=\frac{2n+1}{2}x$ dersek,

\[\lim_{n\rightarrow \infty }\int_{0}^{\frac{2n+1}{2}\pi }\frac{\sin y}{y}dy=\frac{\pi }{2}
\]
buradan da

\[\int_{0}^{\infty }\frac{\sin y}{y}dy=\frac{\pi }{2}\]
bulunur.

Not: Söz konusu integral birçok kaynakta Laplace dönüşümü yardımıyla formal olarak hesaplanır, fakat uygulanan metod pürüzlüdür.
27, Ocak, 2015 İlham Aliyev (608 puan) tarafından  cevaplandı
27, Ocak, 2015 ayhandil tarafından düzenlendi
...