Bijektif Fonksiyon - Matematik Kafası

Bijektif Fonksiyon

0 beğenilme 0 beğenilmeme
38 kez görüntülendi

$a,b\in\mathbb{R}^+,$  $X=\{(x,y)|x^2+y^2=a^2\}\subseteq\mathbb{R}^2$  ve  $Y=\{(x,y)|x^2+y^2=b^2\}\subseteq\mathbb{R}^2$  olmak üzere $$f(x,y):=\left(\frac{b\cdot x}{a},\frac{b\cdot y}{a}\right)$$ kuralı ile verilen $$f:X\rightarrow Y$$ fonksiyonunun bijektif olduğunu gösteriniz.

7, Haziran, 7 Lisans Matematik kategorisinde murad.ozkoc (8,870 puan) tarafından  soruldu

2 Cevaplar

0 beğenilme 0 beğenilmeme

Ortenlik:

$(x,y) \in Y$ ise $$(ax/b)^2+(ay/b)^2=a^2$$ saglanir ve $$f(ax/b,yx/b)=(x,y)$$ de saglandigindan $f$ ortendir. 

Birebirlik:

$(x,y),\ (u,v) \in X$  olmak uzere $$f(x,y)=f(u,v)$$ ise $$(bx/a,by/a)=(bu/a,bv/a)$$ saglanir; yani $(x,y)=(u,v)$ saglanir. Dolayisiyla $f$ birebirdir. 

Genel olarak:

Her cemberi bijectif bir sekilde merkezi orijin olacak sekilde oteleyebilecegimizden genel olarak iki cemberin bijektif olmasi gerektigini cikarabiliriz.

7, Haziran, 7 Sercan (23,792 puan) tarafından  cevaplandı

Hatta daha geneli iki çemberin homeomorfik (topolojik olarak eş) olduğunu da söyleyebiliriz.

Amacım, yanıtların devamında farklı sorular sorarak en son olarak @alpercay'ın yazdığını söylemekti.

0 beğenilme 0 beğenilmeme

Önce birebir olduğunu gösterelim:

$(x_1,y_1),(x_2,y_2)\in X$  ve  $(x_1,y_1)\neq (x_2,y_2)$ olsun.

$$(x_1,y_1)\neq (x_2,y_2)$$

$$\Rightarrow$$

$$x_1\neq x_2 \ \vee \ y_1\neq y_2$$

$$\Rightarrow$$

$$(x_1\neq x_2 \ \wedge \ y_1=y_2)\vee (x_1=x_2 \ \wedge \ y_1\neq y_2)\vee (x_1\neq x_2 \ \wedge \ y_1\neq y_2)$$

$\textbf{I. Durum:}$  $x_1\neq x_2 \ \wedge \ y_1=y_2$ olsun.

$$x_1\neq x_2 \ \wedge \ y_1=y_2$$

$$\Rightarrow$$

$$ \frac{b\cdot x_1}{a}\neq \frac{b\cdot x_2}{a} \ \wedge \ \frac{b\cdot y_1}{a}=\frac{b\cdot y_2}{a}$$

$$\Rightarrow$$

$$ \left(\frac{b\cdot x_1}{a},\frac{b\cdot y_1}{a}\right) \neq \left(\frac{b\cdot x_2}{a}, \frac{b\cdot y_2}{a}\right)$$

$$\Rightarrow$$

$$f(x_1,y_1)\neq f(x_2,y_2).$$

$\textbf{II.}$  ve  $\textbf{III.}$  durum benzer şekilde gösterilir. O halde $f$ fonksiyonu birebirdir.

Şimdi de örten olduğunu gösterelim:

$$(\forall (x,y)\in Y)(\exists (u,v)\in X)(f(x,y)=(u,v))$$ önermesinin doğru olduğunu gösterirsek işimiz biter.

Her  $(x,y)\in Y$  için $$(u,v):=\left(\frac{a\cdot x}{b},\frac{a\cdot y}{b}\right)$$ alınırsa $$f(u,v)= \left(\frac{b\cdot u}{a},\frac{b\cdot v}{a}\right)=(x,y)$$ koşulu sağlanır. O halde $$(\forall (x,y)\in Y)(\exists (u,v)\in X)(f(x,y)=(u,v))$$ önermesi doğru yani $f$ fonksiyonu örtendir.


7, Haziran, 7 murad.ozkoc (8,870 puan) tarafından  cevaplandı
11, Haziran, 11 murad.ozkoc tarafından düzenlendi
$f$ fonksiyonunun sürekli olduğunu gösteriniz.
$f$ fonksiyonunun açık olduğunu gösteriniz.
...