Ortak Köklü İkinci Dereceden Bir Bilinmeyenli Denklemlerde Katsayı Bağıntısı

0 beğenilme 0 beğenilmeme
33 kez görüntülendi

$a_2x^2+b_2x+c_2=0$   ve $a_1x^2+b_1x+c_1=0$  denklemlerinin ortak kökleri varsa katsayıları arasında bir bağıntı bulunuz.

İlgili soruyu genellemek istedim.

26, Mart, 26 Orta Öğretim Matematik kategorisinde alpercay (1,178 puan) tarafından  soruldu
26, Mart, 26 alpercay tarafından düzenlendi

1 cevap

0 beğenilme 0 beğenilmeme

Denklemlerin kökleri $x_1,x_2$ ve $x_1,x_3$  olsun. $x_1$ ortak kök olduğundan $$x_1^2+\dfrac{b_1}{a_1}x_1+\dfrac{c_1}{a_1}=x_1^2+\dfrac{b_2}{a_2}x_1+\dfrac{c_2}{a_2}$$

$$x_1=\dfrac{c_1a_2-c_2a_2}{a_1b_2-a_2b_1}$$   olur. İki denklem için kökler çarpımını kullanarak $x_2x_3=\dfrac{c_1c_2}{a_1a_2x_1^2}$  yazalım.$\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{-b_1}{c_1}$  ve $\dfrac{1}{x_1}+\dfrac{1}{x_3}=\dfrac{-b_2}{c_2}$ eşitliklerini çıkartırsak $$\dfrac{1}{x_2}-\dfrac{1}{x_3}=\dfrac{x_3-x_2}{x_2x_3}.....(1)$$  elde olunur. Benzer olarak $$x_1+x_2=\dfrac{-b_1}{a_1}$$     ve $$x_1+x_3=\dfrac{-b_2}{a_2}$$  eşitliklerini çıkartarak $$x_3-x_2=\dfrac{b_1a_2-b_2a_1}{a_2a_1}.....(2)$$  olur. (1)  ve  (2) eşitlikleri birbirine bölünüp gerekli yerine koymalar yapılarak $$(a_1c_2-a_2c_1)^2=(b_1c_2-b_2c_1)(a_1b_2-a_2b_1)$$  bulunur. Sonucu matris formunda $$\left|\begin{matrix} a_1& c_1\\a_2& c_2\end{matrix}\right|^2=\left|\begin {matrix} a_1& b_1\\a_2& b_2\end{matrix}\right| \left|\begin {matrix}b_1& c_1\\ b_2& c_2\end{matrix}\right|$$  şeklinde de ifade edebiliriz.

4, Nisan, 4 alpercay (1,178 puan) tarafından  cevaplandı
4, Nisan, 4 alpercay tarafından düzenlendi
...