Ortak Köklü İkinci Dereceden Bir Bilinmeyenli Denklemlerde Katsayı Bağıntısı

0 beğenilme 0 beğenilmeme
61 kez görüntülendi

$a_2x^2+b_2x+c_2=0$   ve $a_1x^2+b_1x+c_1=0$  denklemlerinin ortak kökleri varsa katsayıları arasında bir bağıntı bulunuz.

İlgili soruyu genellemek istedim.

26, Mart, 26 Orta Öğretim Matematik kategorisinde alpercay (1,298 puan) tarafından  soruldu
7, Ağustos, 7 alpercay tarafından düzenlendi

1 cevap

0 beğenilme 0 beğenilmeme

Denklemlerin kökleri $x_1,x_2$ ve $x_1,x_3$  olsun. $x_1$ ortak kök olduğundan $$x_1^2+\dfrac{b_1}{a_1}x_1+\dfrac{c_1}{a_1}=x_1^2+\dfrac{b_2}{a_2}x_1+\dfrac{c_2}{a_2}$$

$$x_1=\dfrac{c_1a_2-c_2a_2}{a_1b_2-a_2b_1}$$   olur. İki denklem için kökler çarpımını kullanarak $x_2x_3=\dfrac{c_1c_2}{a_1a_2x_1^2}$  yazalım.$\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{-b_1}{c_1}$  ve $\dfrac{1}{x_1}+\dfrac{1}{x_3}=\dfrac{-b_2}{c_2}$ eşitliklerini çıkartırsak $$\dfrac{1}{x_2}-\dfrac{1}{x_3}=\dfrac{x_3-x_2}{x_2x_3}.....(1)$$  elde olunur. Benzer olarak $$x_1+x_2=\dfrac{-b_1}{a_1}$$     ve $$x_1+x_3=\dfrac{-b_2}{a_2}$$  eşitliklerini çıkartarak $$x_3-x_2=\dfrac{b_1a_2-b_2a_1}{a_2a_1}.....(2)$$  olur. (1)  ve  (2) eşitlikleri birbirine bölünüp gerekli yerine koymalar yapılarak $$(a_1c_2-a_2c_1)^2=(b_1c_2-b_2c_1)(a_1b_2-a_2b_1)$$  bulunur. Sonucu matris formunda $$\left|\begin{matrix} a_1& c_1\\a_2& c_2\end{matrix}\right|^2=\left|\begin {matrix} a_1& b_1\\a_2& b_2\end{matrix}\right| \left|\begin {matrix}b_1& c_1\\ b_2& c_2\end{matrix}\right|$$  şeklinde de ifade edebiliriz.

4, Nisan, 4 alpercay (1,298 puan) tarafından  cevaplandı
4, Nisan, 4 alpercay tarafından düzenlendi
...