Serileri birbirine benzeterek çözümlemek ne kadar doğrudur?

0 beğenilme 0 beğenilmeme
49 kez görüntülendi

Misal verecek olursam eğer, bir seri düşünelim bu seri $S_n=-2-2-2-2-2-2-...-$ olsun bu seriyi şu şekilde çözümlemek ne kadar doğru =

$-(S_n/2)=1+1+1+1+1+1+1+...+,$  Riemann's Zeta Fonksiyonundan $\zeta(0)=-1/2$, böylece $-(S_n/2)=-1/2$.

$(S_n/2)=1/2$ ve


$(S_n)=1$

13, Ekim, 2017 Lisans Matematik kategorisinde Arda Kılıç (51 puan) tarafından  soruldu
16, Ekim, 2017 Arda Kılıç tarafından düzenlendi
Anladığım ve ulaştığım kadarıyla ıraksak serilerde bu kadar basit bir sonuca ulaşılamıyor, fakat buna rağmen eğer seri kesirli ise yani $S_n=(1/2^n)$ şöyle bir serinin limiti alınarak bir şeyler bulabilmemiz mümkün oluyor diye anladım eksiğim var ise lütfen tamamlayın.
...