asal sayı sayısı

0 beğenilme 0 beğenilmeme
211 kez görüntülendi

daha önce sorulduğunu göremedim ve bir sorunun çözümü için şuna ihtiyacım var:

               Verilmiş bir n sayısı için   1 ile n arasında kaç asal sayı vardır.Bunun n e bağlı bir formülü var mIdır?          Ayrıca n ile 2n arasındaki asal sayısı da lazım tabiki formülü varsa.

Open- problem gibi duruyor fakat belki bulunmuştur diye ümit ediyorum.

2, Ekim, 2017 Serbest kategorisinde matero07 (11 puan) tarafından  soruldu
2, Ekim, 2017 matero07 tarafından düzenlendi

Ilk soyledigin bilinse asal sayilarin ne oldugu da bilinir.  Bunu kolaycana gosterebilirsin.

$n$ ile $2n$ arasinda en az bir asal vardir. (Fazlasi icin bir calisma var mi bilmiyorum) Bertrand's postulate olarak arastirabilirsin.

2 Cevaplar

0 beğenilme 0 beğenilmeme

Formülü var (birden çok) ama pratik önemi yok, çok yavaş hesaplıyorlar.

Biri:(https://math.stackexchange.com/questions/776997/formula-for-prime-counting-function)

$\displaystyle \pi (n)=\sum_{j=2}^{n}\frac{\sin^{2}\left(\pi \frac{((j-1)!)^{2}}{j}\right)}{\sin^{2}(\frac{\pi }{j})}$

Daha basit bir formül (Hardy-Wright) ($n>3$ için geçerli) (http://mathworld.wolfram.com/PrimeCountingFunction.html)

$\pi(n)=\displaystyle-1+\sum_{j=3}^n\left((j-2)!-j\left\lfloor\frac{(j-2)!}j\right\rfloor\right)$

Başka da var google ile arayıp bulabilirsin.
2, Ekim, 2017 DoganDonmez (3,569 puan) tarafından  cevaplandı
0 beğenilme 0 beğenilmeme

Aradiginiz sey "Prime Counting Function". Suralara bakilabilir.


https://en.wikipedia.org/wiki/Prime-counting_function


http://mathworld.wolfram.com/PrimeCountingFunction.html


Mathematica 1 ile 10^14 arasinda kac tane asal var sorusuna 49 saniye de cevap veriyor. 10^15 icin girilen sayi cok buyuk diyor.


image

 

 







image 

2, Ekim, 2017 Okkes Dulgerci (1,381 puan) tarafından  cevaplandı
2, Ekim, 2017 Okkes Dulgerci tarafından düzenlendi
...