Monoton olmayan bi dizi artan olabilir mi ?

0 beğenilme 0 beğenilmeme
87 kez görüntülendi

Monoton olmayan bir dizi artan olabilir mi? 

Örneğin ; $\left (\dfrac {n}{n+1}\right)$ dizisinin monotonluğuna bakarsak ,$n=-1<1$ olduğundan monoton, $\dfrac {a_{n+1}} {a_{n}}$=$1+\dfrac {1} {n^{2}+2n}$$>1$ olduğundan $\left(a_{n}\right)$ dizisi monoton artandır. Bu durumda örnekten bağımsız olarak soracak olursam,Monoton olmayan bir dizi olsun fakat artan olsun.Böyle bi durum olabilir mi ?

31, Ağustos, 2017 Lisans Matematik kategorisinde Emre1729 (38 puan) tarafından  soruldu

Monoton dizi ve artan dizi tanımlarını nasıl yapıyorsun?

Acaba cevap sadece "azalmayan diziler " mi? Yoksa başka yorumlar eklenebilir mi?

Sayın @murad.ozkoc hocam 

$\left(a_{n}\right)$=$\left(\dfrac {an+b} {cn+d}\right)$ dizisinde ; $\dfrac {-d} {c}<1$ ise dizi monotondur. $ad-bc>0$ ise dizi monoton artandır. diye biliyorum.

Genel olarak, ozel degil, monoton dizi ve artan dizi tanimlari var. Bunlar nelerdir? Bu tanimlar aslinda cevabinizi direkt veriyor.

Benim yazacaklarımı Sercan benden önce yazmış.

...