$R$ birimli bir halka olsun. $a\in R$ için $ba=1$ olacak şekilde bir tek $b\in R$ var olsun.

0 beğenilme 0 beğenilmeme
130 kez görüntülendi
$ab=1$ olduğunu yani $a$ nın tersinir olduğunu gösteriniz. 
17, Mayıs, 2015 Lisans Matematik kategorisinde Handan (1,511 puan) tarafından  soruldu

Yanlış anlamadıysam b, a'nın sol tersi ise b'nin aynı zamanda a'nın sağ tersi olduğunu soruyorsunuz. 

Aynen öyle. 

1 cevap

1 beğenilme 0 beğenilmeme

Sıfır olmayan her a için sıfırdan farklı bir b bulunduğunu ve ba = 1 olduğunu var sayalım. 

İlk olarak axa = a denklemini sağlayan tek bir x olduğunu gösterelim.

ba = 1 olduğundan, aba = a olur. Dolayısıyla b, axa = a denklemini sağlıyor. 

Diyelim ki başka bir t elemanı da axa = a denklemini sağlıyor. Bu durumda,

ata = a =>

bata = ba olur. ba = 1 olduğunu göz önüne alıp devam edersek,

(ba)ta = ba = 1, =>

ta = 1 olur. Varsayıma göre t yerine sadece b gelebilir. Dolayısıyla t = b'dir.

Demek ki axa = a denklemini sadece b sağlar. 

İspatı tamamlamak için bu halkada sıfır böleninin olmadığını göstermeliyiz önce. 

a'nın sıfırdan farklı olduğunu kabul edip ac = 0 ya da ca = 0 diyelim. Şimdi şu eşitliğe bakalım:

a(b+c)a = aba + aca 

Her iki durumda da (ac = 0 ya da ca = 0),

aba = a ve aca = 0 olur.

Dolayısıyla,

a(b+c)a = a olur.

Bu denklemi sadece b sağladığından (yukarıda ispatladık),

b + c = b  => c = 0. Demek ki bu halkada sıfır böleni yokmuş.

Geldik son darbeye...

Bulgularımız tekrar edersek, sıfırdan farklı her a için tek bir sıfırdan farklı b vardır ki,

aba = a olur.

Dolayısıyla aba - a = 0. Dağılma özelliğinden,

(ab - 1)a = 0. 

a'yı sıfırdan farklı düşündük ve bu halkada sıfır böleni yok. Demek ki

ab - 1 = 0  => ab = 1



17, Mayıs, 2015 Barış Akalın (35 puan) tarafından  cevaplandı
18, Mayıs, 2015 Barış Akalın tarafından düzenlendi
$(ba)ta=ba=1$ ve buradan $ta=1$ yazdığınızda Sıfır bölensizliği kullanıyorsunuz ve sonrasında Sıfır Bölen olmadığını göstererek devam ediyorsunuz. Garip bir durum var!

ba = 1 olduğunu biliyoruz yukarıda... (ba)ta = ba denkleminden ta = 1'e sadeleştirme yaparak değil, 

ba = 1 olduğunu bilerek geçiyoruz... 

Evet doğru güzel bir çözüm olmuş. Teşekkür ediyorum. Bir de şuna bakarsanız: $(ab-1+b)a=1$ ve teklikten $ab=1$.  

$ac=0$ ise neden $ca=0$ olmak zorunda?

Sanırım "ya da" yazmam gerekiyor... Düzelteyim...

hoş bir ispat, eline sağlık.

...