Açık komşuluk ve komşuluk arasındaki ilişki

0 beğenilme 0 beğenilmeme
45 kez görüntülendi

$(X,\tau)$ topolojik uzay, $x,y\in X$  ve $U,N \subseteq X$  olmak üzere

$x$'in açık komşuluklar ailesi:$$\mathcal{U}(x)=\{U| x\in U\in\tau\}$$ $x$'in komşuluklar ailesi:$$\mathcal{N}(x)=\{N|(\exists U\in\mathcal{U}(x)) (U\subseteq N)\}$$

şeklinde tanımlandığına göre;

" $\mathcal{U}(x)=\mathcal{U}(y)\Rightarrow\mathcal{N}(x)=\mathcal{N}(y)$ " önermesi doğru mudur?

" $\mathcal{N}(x)=\mathcal{N}(y)\Rightarrow\mathcal{U}(x)=\mathcal{U}(y)$ " önermesi doğru mudur?

  • iki önermenin doğru olmadığına dair ters örnek düşündüm fakat bulamadım. Eğer ikisi de doğruysa ispatında işime yarayacak bir ipucu verirseniz veya aksine örnek olabilecek bir ipucu çok yardımcı olmuş olursunuz. Yardımcı olacak hocalarıma şimdiden teşekkürler.
11, Ocak, 11 Lisans Matematik kategorisinde mervekendince (457 puan) tarafından  soruldu
11, Ocak, 11 mervekendince tarafından düzenlendi

1 cevap

3 beğenilme 0 beğenilmeme
 
En İyi Cevap

$U(x)=U(y)$ olduğunu varsayalım.

$N \in N(x)$ olsun. Bu şu demek: $x$'i içeren ve $N$'nin içinde yer alan bir $U$ açık kümesi var. Ama varsayimdan dolayı bu $U$ kümesi $y$'yi de içeriyor. Demek ki $N \in N(y)$. Yani, $N(x) \subseteq N(y)$. Simetriden dolayı $N(y) \subseteq N(x)$. Dolayısıyla eşitlik var. 

Ikincisi için de $U(x)\neq U(y)$ olduğunu varsayalım.

Genelligi bozmadan $x$'i içeren ama $y$'yi içermeyen bir $U$ açık kümesi olduğunu düşünelim. Bu $U$ kümesi $N(x)$'de yer alır. Ama $N(y)$'de yer almaz. Demek ki $N(x) \neq N(y)$.

11, Ocak, 11 Ozgur (1,937 puan) tarafından  cevaplandı
11, Ocak, 11 mervekendince tarafından seçilmiş
...