Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
1 beğenilme 0 beğenilmeme
6k kez görüntülendi

Şekilde de görüldüğü gibi iki nokta arasındaki doğrusal mesafe, eğrisel mesafeden daha büyük olmaktadır. Bu durum iki nokta arasındaki en kısa mesafenin bir doğru belirtmesi gerekliliğiyle çelişmez mi? Bu durumu matematiksel olarak nasıl açıklarız?image

Lisans Matematik kategorisinde (549 puan) tarafından 
tarafından yeniden kategorilendirildi | 6k kez görüntülendi

Öklid geometrisinde iki nokta ara. en kısa mesafe doğru parçasıdır. Duruma hangi geometriden baktığına göre değişebilir.

1 cevap

2 beğenilme 0 beğenilmeme

Bunun matematiksel anlamı "geodezik eğridir". Öklid uzayında iki nokta arasındaki en kısa uzaklık bir doğrudur. Geodezik eğriler uzaydaki doğruların rolünü yüzey üzerinde oynayan eğrilerdir. Yani düzlemin, yani 2-boyutlu Öklid uzayının geodezik eğrileri "doğrulardır". Ama yüzeyiniz sizin verdiğiniz gibi bir küre yüzeyi ise bu yüzeyin geodezikleri "büyük çemberler(ekvatordan geçen çemberler)" dir. Şekil sizi yanıltmasın; küre üzerinde doğrular yatmaz.Orada sanıyorum bir izdüşüm yapılmış.Verdiğiniz iki uzaklık da çember yaylarına karşılık geliyor. Kırmızıyla gösterdiğiniz eğer iki nokta arasındaki en kısa uzaklık ise bu iki noktadan geçen büyük çemberin(geodezik eğrinin) bir parçasıdır. Bir eğrinin geodezik eğri olması için yüzeyin normali ile eğrinin ikinci türevinin doğrusal bağımlı olması gerekir. Geodezik eğrilerin skalar hızları sabittir fakat bunun tersi doğru değildir. Ama skalar hızı sabit olmayan bir eğri geodezik eğri değildir.

(3k puan) tarafından 
20,279 soru
21,810 cevap
73,492 yorum
2,475,761 kullanıcı