Dizilerde yakınsaklık: $a_{n+1}=ua_n+va_{n-1}$ - Matematik Kafası

Dizilerde yakınsaklık: $a_{n+1}=ua_n+va_{n-1}$

0 beğenilme 0 beğenilmeme
112 kez görüntülendi

Soru:

$a_0,a_1$ terimleri belli olan $a_{n+1}=ua_n+va_{n-1}$ dizisini tanımlayalım;

Eğer $(a_n)_n$ yakınsak ise  ve  limiti  $0$'dan farklı ise;

$u,v$ sayılarına bağlı hangi bilgileri elde edebiliriz?

Çabam 1:

$(a_n)_n$  ,  $L$ 'ye yakınsasın, tanım gereği;

$\epsilon>0$ verilsin ve  $n\ge N(\in\mathbb N)$  olacak şekilde bir $N$ vardır ki;

$$|a_n-L|<\epsilon$$ olur.

$$a_{n+1}=ua_n+va_{n-1}\quad\to\quad \dfrac{a_{n+1}-va_{n-1}}{u}$$

Dolayısıyla;

$$|a_n-L|=\left|\dfrac{a_{n+1}-va_{n-1}}{u}-L\right|=\left|\dfrac{a_{n+1}-va_{n-1}}{u}+a_n-a_n-L\right|$$ Dolayısıyla;

$$|a_n-L|=\left|\dfrac{a_{n+1}-va_{n-1}-ua_n}{u}+a_n-L\right|\le\underbrace{\left|\dfrac{a_{n+1}-va_{n-1}-ua_n}{u}\right|}_{0}+|a_n-L|<\epsilon$$
olur, demekki;

$$\dfrac{a_{n+1}-va_{n-1}-ua_n}{u}$$ İfadesinin tanımlı olması gerek  dolayısıyla, $u\neq0$

Çabam 2:


Dizilerin yakınsak tanımı kullanılarak $(a_n)_n$ için yakınsayan bir dizi için seçilen $N$ mantığını kullanarak, $(a_{n-1})_n$ dizisi için $N=N+1$ seçersek bu da yakınsar ve $N=N-1$ seçersek $(a_{n+1})_n$ de aynı $L$ sayısına yakınsar dolayısıyla;

$$\lim\limits_{n\to \infty}a_{n+1}=\lim\limits_{n\to \infty}ua_n+\lim\limits_{n\to \infty}va_{n-1}$$

Ve

$$L=uL+vL$$ gelir;

$$1=u+v$$ gelir.

$2. $  Çabamın sonucu daha kuvvetli, peki matematık mantığı ile bu yöntemlerde bir hatam var mı?

5, Ocak, 2017 Lisans Matematik kategorisinde Anil (7,730 puan) tarafından  soruldu

Bu soruyu sormuştum daha önce

sağol.                       

...