Site kurallarında bugüne kadar olan kurallar bütün olarak "Soru Sor" sayfasında maddeler halinde yazılmıştır.Ortaöğretim kategorisindeki düzensizlikler bu sayede giderilmeye çalışılacaktır, sorulacak sorular çok nitelikli ve çok iyi açıklamalı olmalı, yoksa kaldırıl(abil)ir.

Şimdi Sor!

İletişim İçin;

Anıl Berkcan Türker

E.Sercan Yılmaz

Çağan Özdemir

Serilerde eşitsizlikler, farklı metodlar.$(n+1)x^n-1\le nx^{n+1}$

3 beğenilme 0 beğenilmeme
36 kez görüntülendi


$x\ge 0$   ve   $n\in\mathbb N$   ise;

$\boxed{\boxed{ (n+1)x^n-1\le nx^{n+1}  }}$


1.metod;

$(n+1)x^n-1-nx^{n+1}=-nx^n(x-1)+x^n-1$

$=(x-1)\left(-nx^n+\underbrace{x^{n-1}+x^{n-2}+....+x+1}_{\displaystyle\sum_{k=0}^{n-1}x^k}\right)$


$=(x-1)\left(\displaystyle\sum_{k=0}^{n-1}(x^k-x^n)\right)=(1-x)\displaystyle\sum_{k=0}^{n-1}x^k\underbrace{(x^{n-k}-1)}_{(x-1)\sum_{f=0}^{n-k-1}x^f}$

$=\underbrace{(-1)}_{negativ}\underbrace{(1-x)^2\displaystyle\sum_{k=0}^{n-1}x^k\left(\sum_{f=0}^{n-k-1}x^f\right)}_{pozitiv}\le 0$

İstediğimiz kanıtlandı, daha başka sade metodlar nelerdir? 


6, Aralık, 2016 Lisans Matematik kategorisinde Anıl (6,950 puan) tarafından  soruldu

1 cevap

3 beğenilme 0 beğenilmeme

Eşitliğin her 2 tarafı $x^n$ ile bölünürse

$n+1 - \dfrac {1} {x^{n}}$ $\leq$ $nx$

ve eşitsizlik düzenlenirse

$n+1 \leq nx + \dfrac {1} {x^{n}}$ elde edilir. Daha sonra $G.O \leq A.O$ kullanılırsa

$\sqrt[n+1]{x.x.x.x....x.\dfrac {1} {x^{n}}}$ $\leq$ $\dfrac {x+x+x+...+x+\dfrac {1} {x^{n}}} {n+1}$

ve $n+1 \leq nx + \dfrac {1} {x^{n}}$ eşitliğimiz kanıtlanmış oldu.

7, Aralık, 2016 Dogukan633 (694 puan) tarafından  cevaplandı
...