ikizkenar üçgen

0 beğenilme 0 beğenilmeme
447 kez görüntülendi

image


ABC bir üçgen 

$\left| AB\right|$ = $\left| AC\right|$

m$\left( \begin{matrix} \wedge \\ CBD\end{matrix} \right) $ = 30                           m$\left( \begin{matrix} \wedge \\ ACD\end{matrix} \right) $ =24              m$\left( \begin{matrix} \wedge \\ BCD\end{matrix} \right) $ = 18

ise m$\left( \begin{matrix} \wedge \\ DAC \end{matrix} \right) $ =x kaç derecedir?

12, Kasım, 2016 Orta Öğretim Matematik kategorisinde atolga (249 puan) tarafından  soruldu

Sayın atolga, çözüm için siz neler düşündünüz?

ABD açısı 12 

AD yi uzattım içerideki ucgenleri düşündüm dışarıda bir üçgen baktım fakat bulamadım

3 geometri hocasına gösterdim 10 ar dk uğraştılar fakat onlar da bulamadılar 

Hocam gerçekten çok mükemmel çözmüşsünüz çok teşekkürler

Önemli değil. Kolay gelsin.

4 Cevaplar

0 beğenilme 0 beğenilmeme

Seva teoreminin trigonometrik uygulaması:

$\frac{sinx}{sin(96-x)}.\frac{sin12}{sin30}.\frac{sin18}{sin24}=1\Rightarrow sinx.sin12.sin18=sin(96-x).sin30.sin24$ olur. Buradan,

$sinx.sin12.sin18=sin(96-x).\frac 12.2.sin12.cos12\Rightarrow sinx.sin18=sin(96-x).cos12\Rightarrow x=78$ olur. 

12, Kasım, 2016 Mehmet Toktaş (18,615 puan) tarafından  cevaplandı
0 beğenilme 0 beğenilmeme








image

Mehmet Hocamın verdiği trigonometrik çözüme ilaveten bir de sentetik çözüm verelim. Üçgenin AH yüksekliğini çizin.  Bu yükseklik simetri ekseni olduğundan BF=FC olur. Bu durumda

AFC ve DFC üçgenlerinin açıları eşit ve FC ortak kenarına sahip olduklarından AFC üçgeni DFC 

üçgenine eştir. O zaman AF=DF ve <AFD=120 olduğundan <DAF=30 ve sonuç olarak x=30+48=78

bulunur.

12, Kasım, 2016 alpercay (1,303 puan) tarafından  cevaplandı
0 beğenilme 0 beğenilmeme

Ben de iki farklı çözüm vereyim, $m(\widehat{DBA})=12^\circ$ olduğu barizdir. $B,D,Q$ noktaları doğrusal olacak şekilde ve $|AQ|=|BQ|$ şartını sağlayan bir $AQB$ üçgeni oluşturulur, bu üçgen ikizkenar olacağı için $m(\widehat{AQB})=12^\circ$'dir ve $m(\widehat{BAQ})=156^\circ$ olmalıdır. $m(\widehat{BAC})=96^\circ$ olacağı için $m(\widehat{CAQ})=60^\circ$ olur ve $C$ ile $Q$ tamamlandığında $ACQ$ eşkenar üçgeni oluşturulur. $m(\widehat{DQC})=48^\circ$'dir ve $m(\widehat{CDQ})=48^\circ$ olduğundan $|DC|=|QC|=|AC|(!)$ olur. $ADC$ ikizkenardır ve $x$ bulunur...image

16, Aralık, 2017 Deniz Tuna Yalçın (895 puan) tarafından  cevaplandı
0 beğenilme 0 beğenilmeme

İkinci çözümümde de: $Q$,  $|BC|$'nin altında olmak üzere $|AQ|=|AB|$ ve $m(\widehat{BAQ})=60^\circ$ olacak şekilde bir nokta olsun. $AQB$ eşkenardır ve $m(\widehat{QAC})=36^\circ$ olur. $|QA|=|AB|$ olduğundan $m(\widehat{AQC})=m(\widehat{ACQ})=72^\circ$ olur. $$QCB=BDC\Rightarrow |DC|=|BQ|=|AC|(!)$$ ve buradan $x$ bulunur...image

16, Aralık, 2017 Deniz Tuna Yalçın (895 puan) tarafından  cevaplandı
...