Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
1.2k kez görüntülendi

 image $|AD|=|DC|$

$|AB|=15cm,|AC|=20cm,|EF|=4cm$ ise $|EH|$ kaç cm'dir?

Ben $D$ noktasından $E$'ye dikme indirdim ve ikizkenar üçgende dikmenin kenar orta olması özelliğinden yararlanmak istedim.Daha sonra önüme çıkan iki adet dik üçgende öklid uyguladım ve ikisinin de kenar uzunluklarının bire bir aynı olduğunu gördüm.$|EF|=|EH|=4cm$ dedim fakat cevap $8$ imiş.

Orta Öğretim Matematik kategorisinde (1.1k puan) tarafından  | 1.2k kez görüntülendi

Bu dikmelerin toplami AD nin yuksekligini verir

AD yi uzat ve CL=4+x dikmesini indir. A dan BC ye 

dikme(yukseklik) indir. Eslik var mi?

1 cevap

0 beğenilme 0 beğenilmeme
En İyi Cevap

   $|BC|=25$ cm olduğu açık. Ayrıca bir ikizkenar üçgende taban üzerinde (yani eşit olan iki kenar dışındaki kenar) ve köşeler arasında kalacak şekilde alınan bir noktadan,eşit kenarlara inilen dikmelerin uzunluğu toplamı,taban köşelerinden birinin yüksekliğine eşittir. 

  Eğer $[AK]\bot[BC]$ ise $|AD|=|DC|$ olarak verildiğinden $ADC$ ikizkenar üçgeninde ; $|FE|+|EH|=|AK|$ olur. Öte yandan  $ABC$ üçgeninde $15.20=|AK|.25\Rightarrow |AK|=12$ cm olur. Dolayısıyla $4+|FE|=12\Rightarrow |FE|=8$ cm dir.

(19.2k puan) tarafından 
tarafından seçilmiş

Teşekkürler Mehmet hocam.

Önemli değil. İyi çalışmalar.

20,284 soru
21,823 cevap
73,508 yorum
2,568,869 kullanıcı