a,b,c pozitif tam sayılar olmak üzere a.b.c = 360 eşitliğini sağlayan kaç tane (a,b,c) sıralı üçlüsü vardır?

0 beğenilme 0 beğenilmeme
2,523 kez görüntülendi

a,b,c pozitif tam sayılar olmak üzere a.b.c = 360 eşitliğini sağlayan kaç tane (a,b,c) sıralı üçlüsü vardır?

10, Kasım, 2016 Orta Öğretim Matematik kategorisinde matilgi (37 puan) tarafından  soruldu

Sitede bu sorunun benzeri soru olduğunu biliyorum. Lütfen araştırır mısınız.

<p>
     Bu sorunun çözümünde tek tek değer vermeye başladım belki örüntü yakalarım diye fakat malesef :( 360 ın ptbs nı bulup o sayılardan gruplar yapmaya çalıştım fakat :( bir şey elde edemedim.<br>
</p>

2 Cevaplar

0 beğenilme 0 beğenilmeme

$360 = 6^2.10 = 3^2.2^3.5$ olup

$a = 3^b.2^c.5^d$

$b = 3^f.2^g.5^e$

$c = 3^t.2^s.5^r$ olacak şekilde arıyoruz

$b+f+t = 2$ denkleminin negatif olmayan tamsayılarda çözüm sayısı $C(2+3-1,3-1)$ olup $6$ tanedir.

$c+g+s = 3$ olup $C(3+3-1,3-1) = 10$

$d+e+r = 1$ olup $C(1+3-1,3-1) = 3$ tanedir.

$6.3.10 = 180$

11, Kasım, 2016 Dogukan633 (801 puan) tarafından  cevaplandı
11, Kasım, 2016 Dogukan633 tarafından düzenlendi

elinize sağlık cevap 180

2 beğenilme 0 beğenilmeme

$p_1,\cdots, p_r$  farkli asal sayilar ve $e_1,\cdots,e_r$  da pozitif tam sayilar olmak uzere $$n=p_1^{e_1}\cdots p_r^{e_r}$$ olsun.

Soru: $n=a\cdot b \cdot c$ olacak sekilde kac farkli $(a,b,c)$ pozitif tam sayi uclusu vardir?

Cevap: $$\frac{(e_1+1)(e_1+2)}{2} \cdots \frac{(e_r+1)(e_r+2)}{2}.$$

Dikkat ettiyseniz sadece usler ile ilgisi var.

Ornek 1: $n=5$ olsun.

$a=5$ icin $b=1$ ve dolayisi ile $c=1$ (yani $b$ sayisi $5/5=1$'in bir tam boleni ve $c$ de bu bolene karsilik gelen sayi)

$a=1$ icin $b=5$ ve dolayisi ile $c=1$ ya da $b=1$ ve dolayisiyla $c=5$. (Burada da $5/1=5$'in bolenleri ile ilgilenmis olduk).

Toplamda $1+2$ yani $3$ tane uclu bulduk. Formule bakarsak $5=5^1$ oldugundan $$\frac{(1+1)(1+2)}2$$ gercekten de bu degere esit olur.

Cikarim 1: $n$ asal sayi olsun. Bu durumda $3$ tane bu sekilde iclu olur. $$(n,1,1), \;\; (1,n,1), \;\; (1,1,n).$$
Ornek 2: $n=6$ olsun.

$a=1$ icin $bc=6$  olmali ve her $b$ icin biricik $c$ geleceginden bu sekilde $6$'nin pozitif tam bolenleri kadar uclu gelir. Bunlar da $$(1,1,6),\;\; (1,2,3),\;\; (1,3,2),\;\; (1,6,1).$$

$a=2$ icin $bc=3$  olmali ve her $b$ icin biricik $c$ geleceginden bu sekilde $6$'nin pozitif tam bolenleri kadar uclu gelir. Bunlar da $$(2,1,3),\;\; (2,3,1).$$

$a=3$ icin $bc=2$  olmali ve her $b$ icin biricik $c$ geleceginden bu sekilde $6$'nin pozitif tam bolenleri kadar uclu gelir. Bunlar da $$(3,1,2),\;\; (3,2,1).$$

$a=6$ icin $bc=1$  olmali ve her $b$ icin biricik $c$ geleceginden bu sekilde $6$'nin pozitif tam bolenleri kadar uclu gelir. Bunlar da $$(6,1,1).$$

Toplamda $4+2+2+1=9$ tane uclu elde ettik ve $n=2^13^1$ oldugundan $$\frac{(1+1)(1+2)}{2}\frac{(1+1)(1+2)}2=3\cdot3=9$$ olur.


Yaptigimiz: $n$ sayisinin tum pozitif bolenlerinin pozitif bolen sayilarini bulup bunlari toplamak...

$n$ sayisinin pozitif bolenleri biricik sekilde $$p_1^{f_1}\cdots p_r^{f_r}$$ formlari ile eslesir, her $1\le i \le r$ icin $0 \le f_i \le e_r$. Bu sekilde bir formun pozitif bolenleri sayisi $$(f_1+1)\cdots (f_r+1)$$ olur. Biz bunlarin hepsini toplarsak $$\sum_{\begin{matrix} 1 \le i \le r \\ 0 \le f_i \le e_i \end{matrix}} (f_i+1)\cdots (f_r+1)$$ olur. Her carpan birbirinden bagimsiz oldugundan bunu $$\prod_{i=1}^r\sum_{f_i=0}^{e_i}(f_i+1)$$ olarak yazabiliriz. Dikkat ettiysenin ic toplam $1$'den $e_i+1$'e kadar olan tam sayilarin toplami. Bu nedenle istedigimiz sayi $$\prod_{i=1}^r\frac{(e_i+1)(e_i+2)}{2}$$ olur.

Ornek 3: $n=360=2^33^25$ icin istenilen sayi $$\frac{4\cdot5}{2}\frac{3\cdot4}2\frac{2\cdot3}2=180$$ olur.

Son cikarim: Eger pozitiflik sartini kaldirirsak,
$+++$
$+--$
$-+-$
$--+$
olarak her uclu icin $4$ olasi uclu gelir ve bunun disinda da gelmez. Bu nedenle bu durumda pozitif sartinin $4$ kati kadar uclu elde ederiz.

11, Kasım, 2016 Sercan (23,218 puan) tarafından  cevaplandı
11, Kasım, 2016 Sercan tarafından düzenlendi

elinize sağlık cevap 180

...