Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
660 kez görüntülendi

 Reel analiz çalışıyorum ve şöyle bir sorunum var. Diyelim iki kümemiz olsun $E_1$ ve $E_2$. Küme operasyonları kullanarak -birleşim, ters alma ... - bir şekilde $E_1 \cap E_2$ bulmaya çalışıyorum. Mesela $E_1 \cap E_2$ elde etmek istiyorsak şöyle bir şey yapıyorlar:

$$E_1 - (E_1 - E_2)= E_1 - (E_1 \cap E_2^c) = E_1 \cap (E_1 \cap E_2^c)^c$$$$ = E_1 \cap (E^c \cup E_2) = (E_1 \cap E_1^c) \cup (E_1 \cap E_2) = E_1 \cap E_2$$


Şimdi iki kümenin birleşim veya kesişimini yukarıdaki gibi farklı yollardan nasıl elde ederim? Sonlu sayıda küme ile çalıştığımızı varsayabilirsiniz. 
Lisans Matematik kategorisinde (477 puan) tarafından 
tarafından düzenlendi | 660 kez görüntülendi

1 cevap

0 beğenilme 0 beğenilmeme

Kesişim için ben bir şeyler yazayım:

$A \cap B= (A \cup B) -(A-B \cup B-A) $. Burada $(A-B \cup B-A) $ simetrik fark yani $A \triangle B$.

Soruya bakınca sadece manipulasyon yapıldığını, işlemlerin anlamsız olduğunu düşünebilirsiniz. Ölçü teorisinde halka diye bir kavramı kullandığım kaynak şöyle tanımlıyor:
Bir $X$ kümesi için $\mathcal{R} \subset \mathcal{P}(X)$ olsun. Bu $\mathcal{R}$ koleksiyonuna bir halka diyoruz eğer $\mathcal{R}$ sonlu birleşim ve küme farkı altında kapalı ise. Bu arada şunu belirteyim, başka kaynaklar bu tanıma cisim diyor veya halkayı farklı tanımlayabiliyor.

Şimdi mesela bir $\mathcal{R}$ halkasının sonlu kesişim için kapalı olduğunu göstermeye çalışıyorsak sadece birleşim ve küme farkı operasyonlarını kullanarak kesişimi elde etmemiz lazım. İşte bu tip sorularda manipulasyonlar lazım oluyor.

Sonlu kesişim için de bir şey yazacağım, biraz düşüneyim.

(477 puan) tarafından 
20,274 soru
21,803 cevap
73,475 yorum
2,427,870 kullanıcı