Normal altgruplarda altgrup şartı kaldırılırsa.

0 beğenilme 0 beğenilmeme
164 kez görüntülendi

bir $G$ ve bos olmayan alt kumesi $H$ ornegi verin ki: tum $g \in G$ icin
$H^g=H$ olsun ama $H$ altkumesi $G$'nin normal altgrubu olmasin.

15, Şubat, 2015 Lisans Matematik kategorisinde Sercan (23,218 puan) tarafından  soruldu
16, Şubat, 2015 anesin tarafından düzenlendi

Burada "normal altküme"nin tanımı nedir tam olarak? Eşleniklik (conjugacy) altında kapalı olması değil mi?

Duzelttim. :)

Sanırım sorunun aşikar bir çözümü olmaması için grubun değişmeli olmaması gerektiği koşulu da koyulmalı, aksi takdirde herhangi bir değişmeli grup alıp $H$'yi alt grup olmayan herhangi bir alt küme seçebiliriz :)

maksat farkin ogrenilmesi. :) ama haklisin.

G değişmeli olursa?

Burak asagida tum degismeli gruplar icin de cevap verdi..

2 Cevaplar

2 beğenilme 0 beğenilmeme
 
En İyi Cevap

Örnek 0. $G$ bir abel grubuysa, $H$ altgrup olmayan herhangi bir altküme olsun.

Örnek 1. Herhangi bir normal altgrup al ve içinden 1'i çıkar.

Örnek 2. Herhangi bir $1\neq x$ al gruptan ve $x^G = \{g^{-1}xg : g \in G\}$ kümesine bak.

En genel örnek: $H^G = H$ eşitliğini sağlayan her altküme, bir $X\subseteq G$ için $X^G$ biçimindedir. (Elbette!) Bunlar arasında altgrup olmayan çok vardır.


16, Şubat, 2015 anesin (710 puan) tarafından  cevaplandı
14, Mart, 2015 Sercan tarafından seçilmiş
1 beğenilme 0 beğenilmeme

Rastgele bir $G$ alalım öyle ki $|Z(G)| > 1$ olsun. Grubun merkezi $Z(G)$ ve merkezinin herhangi bir alt kümesi herkesle değişmeli elemanlardan oluştuğu için eli mahkum eşleniklik altında kapalı olacaktır. Yani $H$ alt kümesi olarak $Z(G)$'nin $G$ içinde alt grup olmayan herhangi bir alt kümesini seçebiliriz.

15, Şubat, 2015 Burak (1,254 puan) tarafından  cevaplandı
15, Şubat, 2015 Burak tarafından düzenlendi
...