$$f(x)=\dfrac{1+\sin x-\cos x}{1+\sin x+\cos x}$$ kuralı ile verilen $$f:\left(-\dfrac{\pi}2,\dfrac{\pi}2\right)\to\mathbb{R}$$ fonksiyonunun tek fonksiyon olduğunu gösteriniz.

2 beğenilme 0 beğenilmeme
100 kez görüntülendi

$$f(x)=\dfrac{1+\sin x-\cos x}{1+\sin x+\cos x}$$  kuralı ile verilen $$f:\left(-\dfrac{\pi}2,\dfrac{\pi}2\right)\to\mathbb{R}$$ fonksiyonunun tek fonksiyon olduğunu gösteriniz.

12, Ağustos, 2016 Orta Öğretim Matematik kategorisinde Anil (7,700 puan) tarafından  soruldu
4, Ekim, 2017 murad.ozkoc tarafından düzenlendi

2 Cevaplar

2 beğenilme 0 beğenilmeme
 
En İyi Cevap

Her $x\in(-\frac{\pi}{2},\frac{\pi}{2})$ için eğer $f(x)=-f(-x)\Rightarrow f(x)+f(-x)=0$ ise $f$ tektir. Buna göre, $$f(x)+f(-x)=\frac{1+sinx-cosx}{1+sinx+cosx}+\frac{1+sin(-x)-cos(-x)}{1+sin(-x)+cos(-x)}$$

$$=\frac{1+sinx-cosx}{1+sinx+cosx}+\frac{1-sinx-cosx}{1-sinx+cosx}$$  payda eşitliği yapılırsa 

$$=\frac{1+sinx-cosx-sinx-sin^2x+sinxcosx+cosx+sinxcosx-cos^2x+1-sinx-cosx+sinx-sin^2x-sinxcosx+cosx-sinxcosx-cos^2x}{(1+sinx+cosx)(1-sinx-cosx)}$$ $$f(x)+f(-x)=0$$  olduğu görülür.




12, Ağustos, 2016 Mehmet Toktaş (18,444 puan) tarafından  cevaplandı
1, Ekim, 2016 Anil tarafından seçilmiş

elinize saglık...

Önemli değil Anılcığım.

1 beğenilme 0 beğenilmeme

Diger bir cevap ise su esitlikten gelebilir: $$f(x)=\tan\left( \frac x2 \right).$$ _________________________________________________________________________
Bunu yarim aci formulleri ile rahatlikla bulabiliriz: $$\sin x=2\sin\left( \frac x2 \right)\cos\left( \frac x2 \right),$$$$1-\cos x= 2\sin^2\left( \frac x2 \right),$$$$1+\cos x= 2\cos^2\left( \frac x2 \right).$$Bunlari yerine yazdigimizda $$f(x)=\frac{\sin(x/2)}{\cos(x/2)}=\tan\left( \frac x2 \right)$$ olur.

16, Nisan, 2017 Sercan (23,703 puan) tarafından  cevaplandı
...