Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
3 beğenilme 0 beğenilmeme
712 kez görüntülendi
$n\in Z^+$, $a_n\in R$ ve $0<|a_n|<1$ olmak uzere, $\displaystyle \lim _{n\to \infty} a_1.a_2.....a_n=0$ diyebilir miyiz?
Orta Öğretim Matematik kategorisinde (2.9k puan) tarafından  | 712 kez görüntülendi

ben derim..bir ben daha gelirse.diyebiliriz.

Diyemeyiz. $$a_n = \frac{(n+4)(n+1)}{(n+2)(n+3)}$$ dizisini örnek olarak alabilirsin. Bu diziyi nasıl bulduğumu cevapta ayrıntılı açıklayacağım.

1 cevap

5 beğenilme 0 beğenilmeme
En İyi Cevap
Öncelikle $p_n = a_1 . a_2 . \ldots a_n$ diyelim. Soru bize şunu soruyor: "Eğer $0 < |a_n| < 1$ olduğunu biliyorsak $\lim_{n \to \infty} p_n = 0$ diyebilir miyiz?"
Cevap hayır. Birkaç gözlem yapalım:

Öncelikle bütün $a_n$'lerin pozitif olduğu durumu inceleyelim. 

Gözlem 1: Bu durumda her $a_n$ terimi $1$'den küçük olduğundan dolayı  $p_{n} = p_{n-1}.a_n < p_{n-1} $ olması gerektiğini görüyoruz. Yani $p_n$ dizisi monoton (strictly) azalan bir dizi. Aynı zamanda alttan sıfırla sınırlı, zira pozitif sayıların çarpımı hep pozitif olmak zorunda. O halde mutlaka sıfır ile bir arasında bir yere yakınsaması gerekir. Yakınsadığı yer sıfır olmak zorunda mı? Olmasın diye uğraşalım.

Gözlem 2: En kolay akla gelen azalan ve sıfıra yakınsayan dizi $1/n$ dizisi. Eğer ben bunu $1/2$'ye yakınsayan bir dizi yapmak istiyorsam $(1/2) + (1/n)$ dizisini düşünebilirim. O zaman $p_n$ dizisini $(1/2) + (1/n)$ yapmaya çalışayım. Ufak bir sorun var, o da şu: Böyle yaparsam $p_1 = a_1 = 3/2$ oluyor ve $p_2 = a_1. a_2 = 3/2 . 1$ oluyor. Yani ilk iki terim biraz kötü. O yüzden ben bu diziyi biraz kaydıracağım ve üçüncü terimden başlıyormuş gibi yapacağım: yani $(1/2) + (1/n)$ dizisi yerine $$\frac{1}{2} + \frac{1}{n+2}$$ dizisini düşüneceğim. Amacım her seferinde $a_n$'yi öyle bir seçmek ki $p_n$ bu yukarıdaki diziye eşit olsun. Bunu başarabilir miyim?

Amaç: $p_1 = a_1 = 5/6$ olmak üzere, $n> 1$ için $a_n$ terimini nasıl seçmeliyim ki $$\frac{1}{2} + \frac{1}{n+2} = p_n = p_{n-1}.a_n = \left( \frac{1}{2} + \frac{1}{n+1}\right).a_n$$ olsun. Ama bu basit: 

$$a_n = \frac{\frac{1}{2} + \frac{1}{n+2}}{\frac{1}{2} + \frac{1}{n+1}}$$ olmalı. Burada gerekli işlemleri yapınca 
$$a_n = \frac{\frac{n+4}{2(n+2)}}{\frac{n+3}{2(n+1)}} = \frac{(n+1)(n+4)}{(n+3)(n+2)}$$ olması gerektiğini görüyoruz.

$(a_n)$ dizimizi inşa ettik. Bunun gerçekten işe yaradığını nereden bileceğiz? Tümevarımla $p_n$'nin istediğimiz 1/2 + 1/(n+2) dizisine eşit olduğunu gösterebiliriz.

Gözlem 3: Burada limitin $1/2$'ye eşit olmasını istediğimiz için, öyle seçtik. $1/3$ seçseydik başka bir dizi elde edebilirdik. Ayrıca işlemler kolay olsun diye $1/(n+2)$ ekledik. İsteseydik sıfıra yakınsayan ve limit olmasını istediğimiz değere ekleyince $1$'den büyük çıkmayan herhangi başka bir dizi alabilirdik. Yani aslında sayılamayacak sonsuzlukta örnek yazmak mümkün.

Gözlem 4: Yukarıda bütün $a_n$'lerin pozitif olduğunu düşünelim demiştim. Şimdi bulduğumuz örnekte çift terimlerin pozitif, tek terimlerin negatif olduğunu düşün. Bu durumda $p_n$ dizisi bir $-1/2$'nin soluna , bir $1/2$'nin sağına sıçrayacak sayı doğrusu üzerinde. Yani $p_n$ dizisinin limiti olmayacak.
(2.5k puan) tarafından 
tarafından seçilmiş

Teşekkürler Özgür Hocam, aman yani Özgür bey, veya hanım, hangisini seviyorsanız :) Anladım gibi ama yine de elime kalem alıp kontrol edip özümsemem lazım, anlamadığım yer çıkarsa sorarım.

Şu da alakalı bir problem olabilir:

Eğer bu limit sıfırdan farklı ise, $\sup_n a_n = 1$ olmak zorundadır.

20,284 soru
21,824 cevap
73,509 yorum
2,574,778 kullanıcı