$\displaystyle\sum_{n=1}^\infty\dfrac{n}{a^n}(a\in\mathbb R^{>1})$ olan yakınsak dizisini çözünüz

0 beğenilme 0 beğenilmeme
41 kez görüntülendi



$\displaystyle\sum_{n=1}^\infty\dfrac{n}{a^n}(a\in\mathbb R^{>1})$ olan yakınsak dizisini çözünüz   

16, Haziran, 2016 Orta Öğretim Matematik kategorisinde Anil (7,670 puan) tarafından  soruldu

2 Cevaplar

2 beğenilme 0 beğenilmeme

$$1+x+\cdots+x^{n}=\frac{1-x^{n+1}}{1-x}$$ oldugundan $$1+2x+\cdots nx^{n-1}=\frac{nx^{n+1}-(n+1)x^n+1}{(1-x)^2}$$ olur ve $$x+2x^2+\cdots+nx^n=x\frac{nx^{n+1}-(n+1)x^n+1}{(1-x)^2}$$ olur. $x=1/a$ icin limit alirsak $$\dfrac{1}{a\left(1-\dfrac1a\right)^2}$$ elde edilir.

16, Haziran, 2016 Sercan (23,213 puan) tarafından  cevaplandı

güzel, ben gene de daha ortaöğretimsini de yazayım :)

mobili bağladım pcye hahaha :)

Bu zaten ortaogretim. Toplam sembolu bile kullanmadim. O derece orta ogretim. Limiti mecbur alacagiz. 

ben lımıt almadım.

Kural'da limit aliniyor. Bu da almis oldugun anlamina geliyor. Sonsuz toplam limitsiz olmaz. 

haklisiniz.       

benım cevap daha hoş.

0 beğenilme 0 beğenilmeme

$$\boxed{\text{Kural:}\left|\dfrac{1}{a}\right|<1\quad\text{ise}\quad\quad1+\dfrac{1}{a}+\dfrac{1}{a^2}+\dfrac{1}{a^3}+.......+\dfrac{1}{a^n}+....=\dfrac{a}{a-1}}$$


$$\displaystyle\sum_{n=1}^\infty\dfrac{n}{a^n}(a\in\mathbb R^{>1})=\dfrac{1}{a}+\dfrac{2}{a^2}+\dfrac{3}{a^3}+.......+\dfrac{n}{a^n}+....$$


$$S=1+\dfrac{1}{a}+\dfrac{2}{a^2}+\dfrac{3}{a^3}+.......+\dfrac{n}{a^n}+....$$
$$\cdots$$
$$S_1=\dfrac{1}{a}+\dfrac{1}{a^2}+\dfrac{1}{a^3}+.......+\dfrac{1}{a^n}+....$$
$$S_2=\dfrac{1}{a^2}+\dfrac{1}{a^3}+.......+\dfrac{1}{a^n}+....$$
$$S_3=\dfrac{1}{a^3}+.......+\dfrac{1}{a^n}+....$$

$$\text{bunları toplarsak istenen ifadeyi buluruz}\;\left(S_1+S_2+S_3+......=\displaystyle\sum_{n=1}^\infty\dfrac{n}{a^n}\right)$$
$$---------------------------$$
$$S_1=\dfrac{1}{a}+\dfrac{1}{a^2}+\dfrac{1}{a^3}+.......+\dfrac{1}{a^n}+....=\dfrac{1}{a}.\left(\dfrac{a}{a-1}\right)$$
$$S_2=\dfrac{1}{a^2}+\dfrac{1}{a^3}+.......+\dfrac{1}{a^n}+....=\dfrac{1}{a^2}.\left(\dfrac{a}{a-1}\right)$$

$$S_3=\dfrac{1}{a^3}+.......+\dfrac{1}{a^n}+....=\dfrac{1}{a^3}.\left(\dfrac{a}{a-1}\right)$$

$$\vdots$$

$$\text{bunları toplayıp , paranteze alalım}$$

$$\displaystyle\sum_{n=1}^\infty\dfrac{n}{a^n}(a\in\mathbb R^{>1})=S_1+S_2+S_3+....=\dfrac{1}{a}.\left(\dfrac{a}{a-1}\right)+\dfrac{1}{a^2}.\left(\dfrac{a}{a-1}\right)+.....$$

$$=$$

$$\dfrac{1}{a}.\left(\dfrac{a}{a-1}\right)\underbrace{\left[1+\dfrac{1}{a}+\dfrac{1}{a^2}+\dfrac{1}{a^3}+......\right]}_{\left(\dfrac{a}{a-1}\right)}$$
$$\Longleftrightarrow$$
$$\boxed{\boxed{\boxed{\displaystyle\sum_{n=1}^\infty\dfrac{n}{a^n}(a\in\mathbb R^{>1})=\dfrac{1}{a}\left(\dfrac{a}{a-1}\right)^2}}}$$

16, Haziran, 2016 Anil (7,670 puan) tarafından  cevaplandı

Toplam icerisinde ayri bir toplam almak dogru mu peki? Ortaogretimsel olarak bunu aciklayabilir misin?

hocam neyi aciklayayim tam anlayamadim.bence dogru cok akil da karistirmiyor.

Elinde bir toplam dizisi var, o toplam dizisindeki elemanlari ayri bir toplam olarak genisletiyorsun ve genislettikten sonra yer degistiriyorsun. Hatta daha fazlasi da var.

...