(k+2)!=(k+2)(k+1)!
(k+2)!=[(k+1)+1](k+1)!
(k+2)!=(k+1)(k+1)!+(k+1)!
(k+2)!−(k+1)!(k+1)!=k+1 olur Bunu toplamda yerine yazarsak :
n∑k=0(k+2)!−(k+1)!(k+1)!.(k+2)!=1(k+1)!−1(k+2)!
n∑k=0[1(k+1)!−1(k+2)!]=11!−12!+12!−13!+...+1(n−1)!−1n!
n∑k=0[1(k+1)!−1(k+2)!]=11!−1n! Buradan da limn→∞[11!−1n!]=1 olacaktır.