$\pi^2$ sayisinin irrasyonel oldugu

2 beğenilme 0 beğenilmeme
113 kez görüntülendi

$\pi^2$ sayisinin irrasyonel oldugunu gosteriniz.

Not: $\sqrt2$ bir irrasyonel sayi fakat karesi rasyonel. 

24, Mayıs, 2016 Orta Öğretim Matematik kategorisinde Sercan (23,218 puan) tarafından  soruldu
24, Mayıs, 2016 Sercan tarafından düzenlendi

aşkın sayılar irrasyonel midir?

Tabi askin oldugunu gosterirsek is biter, sadece $\pi^2=a/b$  kabulu ile  bunu gosterebilir miyiz?  (Rasyonel sayilar uzerinde) Askin oldugunu gosterince tum rasyonel katsayili (derece>1) $P(\pi)$'ler irrasyonel olur.

2 tane kesirli sayı alırım aralıgı sürekli kücültürüm ama hicbirzaman tamamen $\pi^2$ ye ulaşamam kısaca böyle olur .

Bu dedigin yontem basit mi? Bi dene bakalim, cikarsa cevap bekliyorum.

polinomal şekilde pi yi gösterip 2 polinomun çarpımındakı gıbı gosterme de degıl demı sızın yontemınız? amacım sızden farklı bır şekılde ıspatlamak.

hatta $r>1$ için her $k=r.\pi$   olan $k$ sayısı aşkındır" ı bile ispatlayabiliriz bu yontemle . iyice yazıp atıyım hocam.

$r$ nedir? Tam sayi mi? $\pi$ irrasyonel oldugundan $q\pi$ de irrasyonel olur, $q \in \mathbb Q$.

Benin yontemin $\pi=a/b$ ile baslamak ve celiski getirmek.

2 Cevaplar

0 beğenilme 0 beğenilmeme

Hatalı Yaklaşım

$2,7=2.10^0+7.10^{-1}+0.10^{-2}+0.10^{-3}+...........$ diye yazabilirim.

$\pi=3.10^{0}+1.10^{-1}+4.10^{-2}+1.10^{-3}+5.10^{-4}+9.10^{-5}+...........$ yalnız burada ,irrasyonel olmasının nedeni sonsuza doğru giden ve tekrar etmeyen(bizim bildiğimiz veriler ışığında) bir sayı olması.

peki $\pi^2$ için ne diyebiliriz? 

$h(x)=h_0+h_1.x+h_2.x^2+h_3.x^3+...$ gibi olan sonsuz polinom ile bir sonsuz polinomu daha çarpıyormuş gibi $\pi$ yi de öyle çarpalım.


$\pi=3.10^{0}+1.10^{-1}+4.10^{-2}+1.10^{-3}+5.10^{-4}+9.10^{-5}+...........$

$\pi=3.10^{0}+1.10^{-1}+4.10^{-2}+1.10^{-3}+5.10^{-4}+9.10^{-5}+...........$
                                                                                                                             $(\times)$
$-------------------------------$

2 polinomu çarparsak ve  $10^\ell$ yani aynı cinsten olanları (elmaları ve armutları) toplar yazarsak görüceğizki sonsuza doğru hiç bitmeyen ve aynı şekilde tekrar etmeyen sayılar silsilesi.

bu da sadece $\pi^2$nin irasyonelliğini değil $k\in\mathbb [1,\infty)\in \mathbb Z$ için  $k.\pi$ 'nin de irasyonelliğini gösterir


24, Mayıs, 2016 Anil (7,670 puan) tarafından  cevaplandı
24, Mayıs, 2016 Anil tarafından düzenlendi

Aynisini $\sqrt 2$ icin de yapabilirsin. Fakat karesi $2$ geliyor. Oradaki notu yazma sebebim de buydu.

işte oyuzden yaklaşım-2 var

Hadi bakalim, onu bekliyoruz o zaman :)

π 'ni irasyonelliği bu kadar basit tanımlanmamalı.

0 beğenilme 0 beğenilmeme

Daha önce Doğan hocam cevabı buraya eklemişti.

24, Mayıs, 2016 murad.ozkoc (8,693 puan) tarafından  cevaplandı
...