Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
2 beğenilme 0 beğenilmeme
566 kez görüntülendi

Aşağıdaki fonksiyonel denklemin bir çözümünü bulun. (yani eşitliğin sağ tarafının tanımladığı operatörün sabit fonkyiyonunu bulun). İlk bakılacak özel durum: $s=1$.

$$\psi(y+1)-\psi(y)+\frac{1}{(1+y)^{2s}} \psi\left(\frac{1}{1+y}\right)=$$

$$\frac{1}{(2+y)^{2s}} \psi\left(\frac{1}{2+y}\right)-\frac{1}{(2y+1)^{2s}} \psi\left(\frac{y}{2y+1}\right)$$


Not. Bu orijinal bir araştırma sorusudur ve cevabını bilmiyorum. Ama şayet ilgileniyorsanız aşağıdaki yarım-Eisenstein serisine benzer bir çözüm arayabilirsiniz. 

$$\psi(y):=\sum_{n,m=1}^\infty \frac{1}{(2ny+m)^{2s}}$$

Bu arada denklemin sağ tarafına "Mayer operatörü" dersek, şu yarım-Eisenstein seris, Riemann zeta'nın sıfırlarına bu operatörün çekirdeğine düşer:

$$\psi(y):=\sum_{n,m=1}^\infty \frac{1}{(ny+m)^{2s}}$$


Yani bu fonksiyon şu fonksiyonel denklemi sağlar (ki buna Lewis fonksiyonel denklemi adı verilir)

$$\psi(y+1)-\psi(y)+\frac{1}{(1+y)^{2s}} \psi\left(\frac{1}{1+y}\right)=0$$

Akademik Matematik kategorisinde (209 puan) tarafından 
tarafından düzenlendi | 566 kez görüntülendi

$y$'ler karmaışık sayı. İki $\psi$ fonksiyonunu da çözüm olarak deneyebilirsiniz. İkisi de bir sezgi verecektir problem hakkında..

aradığımız "çözüm" bir fonksiyon. Yani bu denklemin çözümü bir sayı olmayacak.

soruya cevap olarak yazmışsın, yoruma çevirdim.

20,211 soru
21,744 cevap
73,332 yorum
1,933,206 kullanıcı