Spec($\mathbb{R}[X]$) kümesi nelerden oluşur?

1 beğenilme 0 beğenilmeme
141 kez görüntülendi
Değişmeli ve birimli bir $R$ halkası için, Spec$R$, $R$'nin asal ideallerinin kümesi olarak tanımlanır. Dolayısıyla bu soruda $\mathbb{R}[X]$ halkasının asal ideallerinin ne olduğunu bulmak gerekiyor.
20, Ocak, 2015 Akademik Matematik kategorisinde Enis (1,075 puan) tarafından  soruldu
20, Ocak, 2015 Enis tarafından düzenlendi
Acaba bu soruda tam olarak ne sorulduğunu açıklayabilir misiniz?

3 Cevaplar

0 beğenilme 0 beğenilmeme
$\mathbb{R}[x]$ de asal idealler monik 1. veya (gerçel kökü olmayan) monik 2. derece polinomlarla üretilir. Gerçel kökü olmayan 2. derece polinomların (kompleks) kökleri birbirinin eşleniğidir. Bunu kullanarak, Spec$\left(\mathbb{R}[x]\right)$ ile $\{z\in\mathbb{C}: \textrm{Im}\ z\geq0\}$ kümesi arasında doğal bir eşleme şöyle kurulabilir:

$I=(x-a)\mathbb{R}[x]\mapsto a$,

$ I=(x^2+ax+b)\mathbb{R}[x]\mapsto \frac{-a+i\sqrt{4b-a^2}}{2}\quad (a^2-4b<0) $
20, Ocak, 2015 DoganDonmez (3,534 puan) tarafından  cevaplandı
21, Ocak, 2015 DoganDonmez tarafından düzenlendi
0 beğenilme 0 beğenilmeme

[x] de asal idealler monik 1. veya (gerçel kökü olmayan) monik 2. derece polinomlarla üretilir.  Bu kısmı biraz açabilir misin?

21, Ocak, 2015 alionur (69 puan) tarafından  cevaplandı
1 beğenilme 0 beğenilmeme
$\mathbb{R}[x]$ deki indirgenemez ($\mathbb{R}[x]$ tek tip çarpanlara ayrılabilme bölgesi olduğundan  asal) polinomların en çok ikinci derece  olduğunu şöyle gösterebiliriz. $P(x)$ in derecesi en az 3 olsun. $a\in\mathbb{C},\ P(x)$ in kompleks bir kökü olsun. $a\in\mathbb{R}$ ise $x-a,\ P(x)$ i böler ve bölüm polinomu da (en az 2. derecedir ve) $\mathbb{R}[x]$ dedir. $a\notin\mathbb{R}$ ise $\bar{a}$ de $P(x)$ in bir köküdür ve $a\neq\bar{a}$ dır. Buradan $(x-a)(x-\bar{a})\in \mathbb{R}[x]$ dir ve $P(x)$ i böler ve bölüm polinomu da (en az 1. derecedir ve) $\mathbb{R}[x]$ dedir. Dolayısıyla, $\mathbb{R}[x]$ de derecesi 2 den büyük indirgenemez polinom yoktur. Her cisimde,  ikinci (ve üçüncü) derece polinomların  indirgenemez olması için gerek ve yeter koşul polinomun  (o cisimde)  kökü olmaması  olduğu aşikardır.

(Not: bunun sonucu olarak (teorik olarak!) tüm rasyonel fonksiyonları, (basit kesirlere ayrıştırma kullanarak) elemanter fonksiyonlar ile integralleyebiliyoruz)
21, Ocak, 2015 DoganDonmez (3,534 puan) tarafından  cevaplandı
21, Ocak, 2015 DoganDonmez tarafından düzenlendi
...