$2^{^{\frac{3}{ln4}}}$$=2^{^{\frac{3}{2ln2}}}=(2^{^{\frac{1}{ln2}}})^{^{\frac{3}{2}}}$
$(2^{^{\frac{1}{ln2}}})=A$ dersek
$log_2A=\dfrac{1}{ln2}$ olur
$log_A2=ln2$ olur
dolayısıyla $A=e$ imiş yerine koyarsak
$(2^{^{\frac{1}{ln2}}})^{^{\frac{3}{2}}}=A^{^{\frac{3}{2}}}=e^{^{\frac{3}{2}}}=e\sqrt e$